mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
Main changes are detailed below: New features - * CARLA 0.7 simulator integration * Human control of the game play * Recording of human game play and storing / loading the replay buffer * Behavioral cloning agent and presets * Golden tests for several presets * Selecting between deep / shallow image embedders * Rendering through pygame (with some boost in performance) API changes - * Improved environment wrapper API * Added an evaluate flag to allow convenient evaluation of existing checkpoints * Improve frameskip definition in Gym Bug fixes - * Fixed loading of checkpoints for agents with more than one network * Fixed the N Step Q learning agent python3 compatibility
183 lines
7.3 KiB
Python
183 lines
7.3 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from collections import OrderedDict
|
|
from configurations import Preset, Frameworks
|
|
from logger import *
|
|
try:
|
|
import tensorflow as tf
|
|
from architectures.tensorflow_components.general_network import GeneralTensorFlowNetwork
|
|
except ImportError:
|
|
failed_imports.append("TensorFlow")
|
|
|
|
try:
|
|
from architectures.neon_components.general_network import GeneralNeonNetwork
|
|
except ImportError:
|
|
failed_imports.append("Neon")
|
|
|
|
|
|
class NetworkWrapper(object):
|
|
def __init__(self, tuning_parameters, has_target, has_global, name, replicated_device=None, worker_device=None):
|
|
"""
|
|
|
|
:param tuning_parameters:
|
|
:type tuning_parameters: Preset
|
|
:param has_target:
|
|
:param has_global:
|
|
:param name:
|
|
:param replicated_device:
|
|
:param worker_device:
|
|
"""
|
|
self.tp = tuning_parameters
|
|
self.has_target = has_target
|
|
self.has_global = has_global
|
|
self.name = name
|
|
self.sess = tuning_parameters.sess
|
|
|
|
if self.tp.framework == Frameworks.TensorFlow:
|
|
general_network = GeneralTensorFlowNetwork
|
|
elif self.tp.framework == Frameworks.Neon:
|
|
general_network = GeneralNeonNetwork
|
|
else:
|
|
raise Exception("{} Framework is not supported".format(Frameworks().to_string(self.tp.framework)))
|
|
|
|
# Global network - the main network shared between threads
|
|
self.global_network = None
|
|
if self.has_global:
|
|
with tf.device(replicated_device):
|
|
self.global_network = general_network(tuning_parameters, '{}/global'.format(name),
|
|
network_is_local=False)
|
|
|
|
# Online network - local copy of the main network used for playing
|
|
self.online_network = None
|
|
with tf.device(worker_device):
|
|
self.online_network = general_network(tuning_parameters, '{}/online'.format(name),
|
|
self.global_network, network_is_local=True)
|
|
|
|
# Target network - a local, slow updating network used for stabilizing the learning
|
|
self.target_network = None
|
|
if self.has_target:
|
|
with tf.device(worker_device):
|
|
self.target_network = general_network(tuning_parameters, '{}/target'.format(name),
|
|
network_is_local=True)
|
|
|
|
if not self.tp.distributed and self.tp.framework == Frameworks.TensorFlow:
|
|
variables_to_restore = tf.global_variables()
|
|
variables_to_restore = [v for v in variables_to_restore if '/online' in v.name]
|
|
self.model_saver = tf.train.Saver(variables_to_restore)
|
|
if self.tp.sess and self.tp.checkpoint_restore_dir:
|
|
checkpoint = tf.train.latest_checkpoint(self.tp.checkpoint_restore_dir)
|
|
screen.log_title("Loading checkpoint: {}".format(checkpoint))
|
|
self.model_saver.restore(self.tp.sess, checkpoint)
|
|
self.update_target_network()
|
|
|
|
def sync(self):
|
|
"""
|
|
Initializes the weights of the networks to match each other
|
|
:return:
|
|
"""
|
|
self.update_online_network()
|
|
self.update_target_network()
|
|
|
|
def update_target_network(self, rate=1.0):
|
|
"""
|
|
Copy weights: online network >>> target network
|
|
:param rate: the rate of copying the weights - 1 for copying exactly
|
|
"""
|
|
if self.target_network:
|
|
self.target_network.set_weights(self.online_network.get_weights(), rate)
|
|
|
|
def update_online_network(self, rate=1.0):
|
|
"""
|
|
Copy weights: global network >>> online network
|
|
:param rate: the rate of copying the weights - 1 for copying exactly
|
|
"""
|
|
if self.global_network:
|
|
self.online_network.set_weights(self.global_network.get_weights(), rate)
|
|
|
|
def apply_gradients_to_global_network(self):
|
|
"""
|
|
Apply gradients from the online network on the global network
|
|
:return:
|
|
"""
|
|
self.global_network.apply_gradients(self.online_network.accumulated_gradients)
|
|
|
|
def apply_gradients_to_online_network(self):
|
|
"""
|
|
Apply gradients from the online network on itself
|
|
:return:
|
|
"""
|
|
self.online_network.apply_gradients(self.online_network.accumulated_gradients)
|
|
|
|
def train_and_sync_networks(self, inputs, targets):
|
|
"""
|
|
A generic training function that enables multi-threading training using a global network if necessary.
|
|
:param inputs: The inputs for the network.
|
|
:param targets: The targets corresponding to the given inputs
|
|
:return: The loss of the training iteration
|
|
"""
|
|
result = self.online_network.accumulate_gradients(inputs, targets)
|
|
self.apply_gradients_and_sync_networks()
|
|
return result
|
|
|
|
def apply_gradients_and_sync_networks(self):
|
|
"""
|
|
Applies the gradients accumulated in the online network to the global network or to itself and syncs the
|
|
networks if necessary
|
|
"""
|
|
if self.global_network:
|
|
self.apply_gradients_to_global_network()
|
|
self.online_network.reset_accumulated_gradients()
|
|
self.update_online_network()
|
|
else:
|
|
self.online_network.apply_and_reset_gradients(self.online_network.accumulated_gradients)
|
|
|
|
def get_local_variables(self):
|
|
"""
|
|
Get all the variables that are local to the thread
|
|
:return: a list of all the variables that are local to the thread
|
|
"""
|
|
local_variables = [v for v in tf.global_variables() if self.online_network.name in v.name]
|
|
if self.has_target:
|
|
local_variables += [v for v in tf.global_variables() if self.target_network.name in v.name]
|
|
return local_variables
|
|
|
|
def get_global_variables(self):
|
|
"""
|
|
Get all the variables that are shared between threads
|
|
:return: a list of all the variables that are shared between threads
|
|
"""
|
|
global_variables = [v for v in tf.global_variables() if self.global_network.name in v.name]
|
|
return global_variables
|
|
|
|
def set_session(self, sess):
|
|
self.sess = sess
|
|
self.online_network.sess = sess
|
|
if self.global_network:
|
|
self.global_network.sess = sess
|
|
if self.target_network:
|
|
self.target_network.sess = sess
|
|
|
|
def save_model(self, model_id):
|
|
saved_model_path = self.model_saver.save(self.tp.sess, os.path.join(self.tp.save_model_dir,
|
|
str(model_id) + '.ckpt'))
|
|
screen.log_dict(
|
|
OrderedDict([
|
|
("Saving model", saved_model_path),
|
|
]),
|
|
prefix="Checkpoint"
|
|
)
|