1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/docs_raw/source/diagrams.xml
Gal Leibovich 138ced23ba RL in Large Discrete Action Spaces - Wolpertinger Agent (#394)
* Currently this is specific to the case of discretizing a continuous action space. Can easily be adapted to other case by feeding the kNN otherwise, and removing the usage of a discretizing output action filter
2019-09-08 12:53:49 +03:00

1 line
8.5 KiB
XML

<mxfile modified="2019-09-03T07:00:02.990Z" host="www.draw.io" agent="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36" etag="X_429KB6d-D659ARfbKd" version="11.2.4" type="device" pages="1"><diagram id="33c2a640-8c1e-935c-0e0a-86b5dd5c932c" name="Page-1">7V1be6M40v41uUwehDhe5tDpmd3u3kz37Dez380+xCYOOxi8GCed/vUrYYRBJQO2JQxpZffpsWVzMG9VqepVVekC3y6/f8yC1fPndB7GF6Yx/36B7y5ME1mmQ/5DR962I66LtwOLLJqXX9oNfIt+hOWgUY5uonm4bnwxT9M4j1bNwVmaJOEsb4wFWZa+Nr/2lMbNq66CRQgGvs2CGI7+Ec3z5+2oZxu78V/CaPHMroyM8pPHYPbXIks3SXm9CxM/FX/bj5cBO1f5/fVzME9fa0P4wwW+zdI0375afr8NY/ps2WPbHne/59PqvrMwyXsdgEtgXoJ4E7J7Lu4sf2NPo/g9IT0CXeCb1+coD7+tghn99JXgT8ae82VcfryIgzV9+gZ5PUuX0ax8vc6z9K/wNo3TrDgrdmZe+PhUfcKeMyYjT1Ec1745D0LvaUbH0yQvhcU0yve17xnFHxkP4miRkLE4fMrp22xWHuWQd/ARlU/tJczy8HttqHxkH8N0GebZG/lKJeBeid8bk1vf2w687sTFYkLxXBMV7JTPNyhFdFGdfQcTeVEiJUbN8RSCNg/Wz9VxrQh+cOj/+iBY6gC5UBbMo3CHWpImoQxgXTnAEnwauJqGY0BcLQGuDrMNp+DqGxrXXBKSblNDqY0GSGIRksiSgSQCSAZknhrGsvruneG6kvFDZgt+MgDzrSubg8zxrzy8+7MBgJXG1AGUgp/ZrYlhMr+mvgZ5N6PQUEDqeFVzO31CcfAYxjeVd1B7iDfF/8Ro9Xz85Klnb3/SK5FHWL79195513Dvr2/aQMuDbBHmTUEO5w2PCcJYQ8UWgMLGsjAO8uil6WeJkCqv8JBG5O4qKalsL5ORymVk51inm2wWlofVPR9wJpuXN2xw59o+CHAugnrwVvvain5hfchNY6P13mzfPfEAZLcfAG6JO4C82P7KnbZUWPdSILeHAumprOdUxjkluO9UZvICfYwpRCqdzeHBazWkDcGSHjaYTZ2rwskajI4jihl8GTOaRlEJisjviaLFz1RHKaPz08MoKdTD/Awo0EaMRUZVhn8JZ8fNOiQDSZi/ptlfBd9Ff2EWziMaNxgkeojShLyYRwSA6HGzfTvWeGLAwAE7TSBFs6OyOAGyZ/8scMyf6b/h9xX5yUGJ3CqNo9kbg3YdLFcx/dJTli6rI0rACYQa6W6k3QGRtgDSsywMcgpakNQVNEqeKL7p43/CreYmFMytekd5BX+eZjtBqQ7efjlIivBiPo/ocBDvzho8ppscHKZlA8iGhQeUDTgpV9od0JiXoFroeAXzJome0mwZv/H6X31jXQBm3tKxOE0WxS8hP4R8Qu6PWofwKdjEjamhlJHiNtZaKmrgnsNgwLBpZzAo3kQq1hGTh3VUQLwVAvLsc2Yi5sULZmfm1XeS8JVOMMkLla9wvUoTamDGCvkI6EWjSfb41oCiwDySDjaY/JScoxAbz549tdpDLocY6TAjDygk4zf0wUSzIL4uP1hG8zm9jFAIdmJi9CVa+rIhxffKXyhYnDxVoU2BrycmQiSAqCnhxmw3EkYY202RQA6HdW9C2OBOxMfrkthg/oa7uF3kAZqaE9vTmFrUIwPgp5Br833KNfI5+eHZxDPJtW0olmsYsWWbIg5/DopgrBijfliUFN6XQ3x2IivJ43pViczkZ+dWZZI9O2N+0d1wwfSMhJyajPnZ7oX3M/HBNyuNtgSXGvVA21SFtgvQnj2n6bqFFjkd0nJN77061zyHYgrC5corkg4oXKBKH9dh9gLD2mnq5jnjJE+ApKcISHaOifiT36O85k6Sd/8q70Gyp7l11y7qEVTd+WR5uCPxPvmgw3Lt47xP3it0eBGT5H3yN2yjdu+Tvy/u+yd7n5XKai3YpwVoAmrAxU4WzwYeqwYuVqMGfFB1djWApBm3XPEu5vZhoyzb5zIXHQENygy29Old00UMhlGZKl6TvWMTYzFX2+KfnBXbEK0D7QckcTrWvLQB6WFAOFExofkQLYVJMR+QpWmmQmwXNtmSZ5RUH8w2WfGbdx++BFkUPMZ63fOAdU9kGBBsZQufJmRpgvm8gpQYiCxK6PRAFfo1yIqP0urz+hq5hrgv67qrRq1DLFoWlQJxj/Twd+sP1MMZZtkaS0ruqH0EZBwfz1hXTu3PtZo+w0Brp8jwOupc/PYDTg5w8DuJ8yUJ/2gF3T1a0LkzDbV82ina/PLL4QeA5gCdv92UrDwwliTTLHW+QT4kn1XbzJhLN/mqyItlh4/VWzij52cPmfGGYdz2M5rFkdGZNuJm7aaAyLKRzsnk5gmMAYYBJmdTeAKBsyVRMg1Tcv7Ag7cwnjekhREkANQYgnB1UbIH4Spap/MiAYQlfSy2lbksTNLs0WHsEc8o2A6AHaminzEMN5v8USOvvkYfLcNlWl5Kq3NPHkHQ/EYZj4B7FCj/DB6DNyqPweJlwjw2DXWwQAqE/GcPc5h61ER7Xmj3vZ5/JMw/osptV6ASMqYf62zt8kZTf6+ojYKoYFPcR0FKNS+MT7koYedHrEGIsMqatfo6VDh4GcrGZ+vtZcEIsSgCeCfG+Jx5psiyumBVlXZq9eiMMiL/UV1eim2OyoME3pVlCEXk1DQVZPmt5x2Sg7IEtd9pQrVqz/RCrll0d7igHYTzGS3zZ0y3nlP6zyliCRhiTmFKJ2oBEUdFOX/6BGBvtH7QBMXBgFvu+QCH9ONA0I0mEJDUiIvP3EeOgHYSduKS0RbPhrRTHAZZstPO0iBL9w3feTFZxa5XsApWB5CpiCZ2IOWyWc23aYOls1QL4LTJ7W1y3fP1ZHYmlWpzaolY+cDG4sVbflMOjk8v58/k87IxpKfOdmOYhkydp1ixhGfUMSYxSo7jIcuxDezxDoWHpEScfIOY3eYQqlPBPKt9BcN2Tj3A6ugXDqN4yf3CHUjKxWlKF/GfUkrKJpvlRb1ZR7HET2OoPFoKmt1Nk7obdB0FyIAjYOBVlYE4ovDJiSlm8+ilgaXz3w3dDemGQnpZonNNw2rqP1efkldlVsf2LOsV7cq5HYtTgkI5Tm6s/lFtuLguG9XidKg48c0jkCdqjK1InFzo7uvtVlrhMn0XbH9xPtfeha69eElGI9iGoGWeD0GVC+M/+X4ftmBiVrd1lQuXxrUtPVQTbe98mgg96ZC+Lsivd+HXDMtjCsDtzF1QtcjtwkXucp5kneN1W+HjQOZCeywoiVfWudB1AWaUWGE/sASjaXDrT62G7I4hcusUEZdy4EKO6GAOK8hyxoqVN1iM3Uf0Z5YXFPBmZLD8Cr3d/4R5/lYCHmzylAylWf6cLuiuB59o/F8X2D2UWauknEh+sam4Tn65fYt6erNavVvKwzAHSs542Ep1OS7MRxkJ/2hZnMcGKqD670ro8bONq6hjGrzpDg7Q4fnPgw9gFWb7fz3v+TYPOJll9KbVvOgcdL8rUrdxLUZZNicm1XbcB6sbfyZHUeMCINmsSqG37hx8AO7QTnBLWDKl70FnNVquslR3dL04xkXlt74wOuk6VVGI905KtVRaUZHfaI7LivIC5Rxb/+3ynf/BmZS5LF1GEfzGQw8wuxrM8LdkSm4w44tcFlUrZVVz/LOulb33zDjBTvdD0g1+j94cE0pdPYSd3yWvem2W/IDkVYOvYzMwrIa3RLsgWKxHyklYQrKXPLEVLSBYBkmwEFSljc/XGoNS7lqhtbY1EM3HUnTybPs6OzMvfHzqo5PzIPSeZjKUD0laeCEYcaAhQSdkLMo6QDxDcxRqsM4nDl/CWKn2yZ0dx6F7oPOEYMVTne71CGfU6J5nPmKn13w4t0Nvbh2ve3JQ4vIqkSCj3xMk9LPWHqdtoSnK/lblBxPVpU7+e3KDx6HofG8OxLiEAZLEyBSvFb0PSgiiNKSiQ5dWK/rUFB3UDQ2r6Gfzpqel6BhseetClNQp+pA54FrR1Sg6RkDRvQEVvUfzeR02d4fNpqjkWlnYTNxAAJuOm2XEzaaoxlpV3FxxLXqa7YKJs5FYQG8om2aRDpzfgabzIRnGA/rTyNSKflTgPKyiD7lSrBV9oMB5WEXXDFkvlEDgjM0BA2ekGbLpKzoInDEeMHBGZ2PIfMfFQS9FDxFRdffMM7rN5+MjS7DEjFgesXxdH5IkC5OXKEuTpdZ4FRqPXAxlCU4biE0l8pVes2XH4Gbzk71pQdTEbJmMDoUIabZMiv7ZfKqe6Qi0TxlbZmq2rCdMvGMkMJLKfGtTs2XvQNP5XE5sDuhbM73Wit6OEl9rMbCia7Zs+oru8HsBDavomi3rhRJfH0YUHaKkTtE1WzZ9RXcdoOjugIp+tsB5WmyZYwCGAwszElSxZSYMlTVbNk2NdxBgXrEgh1QdW4ZhvA5oF+MlCl81nv1sA+cEWIL+sMh3VaEJ43pQKKnR7M9lYwS47GHxhL63JkVlkKJI4JurI0WxyDnXIVQ3KYqcAUMoLFot1iHUxDSdp9uQO2AIhc+2X9q0FB2QosMquijQ1Yo+LUUHpOiwiq6r6XuhBEhR5ECUlCm6JVqM1oo+LUUHpChi/cGHUHRLtFI+iKJXT7R/G6m+zQJ36UOOkrCZ37TaNWDQjIXRFr/X2HGYmQCzD3UWcxD4ht/AVjGqQA9d1parQYUIbLmcckoLLmVfL0R46tZfe1KxAdXsCpJ8XcGqhRxLCkmQKFltaJdJAkUuoLIm60BV8iPFmvocar4oNVu0xbCMfVaQBUPadJNr3Lr1zQfk8cDI9VjPHbSBcSsG+9oUQ/t98D4KlekZSU9iArnXEAy4x2rfpsQI7Oli9OztfkSTXmTBqDd9XIfZC3kaacKCnMdMGFlR4C/XhSTQwAq5q+/byIiLrbLwNcjmkk52sHNAhOu++Gvx0wZ2E5DbojZNhTORJONlYl5CBS68aHM2Ka6CLYrbx2u59rZeP7G9ejX3jsVuWbYly251n0qi3bJhEB/MjjRZ2sRIMjFVZ+jzmBgbWhS5u5F17r0w4c3IesjL8VbPNkUuXF9TKH07sup+GoEr0UryvOiptxyEEacL8rSHCYVOKzRsBU9RCNv0JnbLAnVCkPVfaVBHcpQdK1D2lp0Hta739nAEO8hUg+fQ9R7FDiPyPHciZ4Kgeb+kngyaLQCNWcmx+KrYN8D+I8fuVyg6mcFbJpn+ag/mhkjZir6MlgF94JWD+IkK3EO6jgr/Ft89pnmeLlslsfI6eSczpxbiJlivwhlF5yn6Ts3jTXHJazZqsBHy+jnPV+vCWb4n/19E+fPm8YpYUvLmC6UJkuDb2zoPl2syMEuD2TP5bxa80gcSrAsq8T5aLsi/QbxIM3L4cn21ShZypiGP6yO420S6sRYtoOPk8HG2r3gWelceJ+JmobaVr1MNGquQbxg0D8mehYpDD90NDLS/NF3HabVWHrdgwB9wcepmXYiF6lqSpyHJxkQl2cftB0iQZKQleUqS3NfJHJ0ke8ptsiBQ0ZI8XkmWHuMOJMnIYEnu6kRZNV2jRVmqKPddXZdP1ziWlpQpSYo1VaNX7QKgzuipWJDSoqxMlJ3JirKlfP52tChPSZSlL60OJsqup1qUXS3KUxJlf6qibHY4GD2O8MyuI1hhzJ4jJKiLp9VlSuriTVZdLOV8Gsx1/r/ipWn8Y5VHy+hHmfTMyfsYix9aJUv+Lk4GjyaCBZtIlNknpU7M1YtTI7VBriWwQc5IpmyLn06dTiKUt1qObBvk6tWpKYmye74cVVev/kxJUvyRrMgfbvRslsWkzujp1Z8pibI72fnbdg49wmU7B6oTfph/LG5yoMMMbPHwmYOGGXq9ZqxmyhXNuCPJ5gRmqpPqwLyZkk51uHq9ZlKiLD3fYihRtlhAq06UYbeShzSOZm+atjt4Ph2YttNLB2M1Qmo8fGgeHNu78m2iNcb2Xz5PwbOvPJv44Ob2X7d5gT31VwebNeDkuyXPt9esOXxMzB1xulljGfw1s3b325eBjNiJ1cZDGjHf4JeFPGjDRFWHUkwYqxiqofTb10sNlKgWj3dqPcG+4K4yoEwA1E2a5uSxBasVgaXWFWTb46PAkB/UqAL1w3Y3qsgQwWrJgBV2iLzT2idcokUWX888rKWENNfnz7caKAgUqBsiThCsWlYHFGza+eWDBkoAlOV0mz51MMGtS75cfsvDFZy1frv8FAZZEiULPaP1wBUZZjeuvghXWwauAjrj+pMGrg9wNrScADhL0OwBtwSu/YGDHTy+XN9r4HoAV/V3awNOnSWFaX+3QR7SbiQz2u9LRwZHqqPPsTmD2lFfwJ/cP2jgegBn820aRbSwMnX0IaVS8fkfy+0SNIx9rKrPl8qwGKzRi1y0ZbEUHE2AiWb3R8Hu+6Jmbv5IqhvBgmFnjQtmmZDKalx8XXM+HlGenoBagPluE9A+V0Qcd9q/Bzck4f3mqST2NPQhk3Q9ywnSpnGbRTntnaun8c5p3MKceRNN42wpXf4sDmmmu7uHjxq5HshhvuyeBEBDMrk+pJJu42hVLHcZDw//0CD2AdHlQXSxAETmIsgHEdJKGrq+lhOuTQ6ofyZb9dRu4wjcxnoEZBqCCMg0zlbLZRq66m9KksKyYM8eiqAmw4ONsphkf6xsOq1HnBwrm2zxTIvyJETZGAvtc7AomwipFmVdljgpUR5Ja5PDRdnuOEKCKGsGc1KiPJoK20NF2eFiLgWiDFnFjySeff4cJMFiIlsTD81D8ShiwUKgqjKfysWop14HVFlN4+snDRfMm3BsLlMXIwMCJsyckIIXpA1/0UCJ9IotcbfBxDbJkg8TJAY/b+I8ugx09wAxHejyGfBCwFgCpnzAYJ7ZtzB+ulzFwZuGC2YhcducD2sEEUwf+5Csw+Uj+YEaK5BqxOpwWhVLlHkrBSuYMfbL9a1eIukzhZnQ12Dt+YZYImEbwNagu9/o8i2Rr8Fr2KAwwTI72lohTS5ZIocGDCw+coCZpmD6UuVrsAShunP46dsvGieoWLbTjRPbaUs+TpDM+Hy9TbDRSPXw3wVGUJ1OQR7jn7c3dCAKLmgFC6y7Yy7jWjsj3QD7lslXKHs+xFfkRsrYrNdEEjd++BmZ8P0LA6cmrLPmDc1F+KFXLlvaQttcVq1vcJfpm6Dr8xv5eqzIWH5+rokgg3S3CeOiTtjYtlFwgiW1PMnjelWgxVux14iIiWk8fPiqLVyPKcwAGWkCA+crM3C+PAPXZxHQ8hvG79K4MujTeccWkP7UhzCLCDZhtldgDzR+WGT8RrLWbfAd5LyyI9J+W8mM+Z4juoohDNe+Qr5huU75b/Nsrm1f1T41jzbDbRfxrLaLSLTQlYnhs+8NTXD1Td/miiB9dpIu3oRD9SiLa4raExX4lRPnL3ri7Aej4fCxgQhIR0QxSwFSYutnHRvIjA1YgVJjehxLrSAoTfVRR2NJy8CtR3RNj5hvTOm5R4YiCHvmFQnKEXIdyzXAeS33avehx7wUFZOgxDaxWvfU695Itrk/XPcw9luP6NQ9qjC89nlXR9fqImAKMDu/AjXD0Ne8CZ+DlyjNaBcc4zZOdQuxnu6KgzhJErVaVNZ6o2qgoy3mYDm9DRPI0iuVt8+Gjat5urC3tXGc9k7c/kg7cbsO3+VGdidu1gy9Zhh/XUa53lRgj+2zenSPUpdtzHSvXvT+q+6f2Ac5l+9XIJq12IbS8oGDacdfgyh5JHOBBq8bPMR3+/INJOpToKjfnon1Zh7j8UaaCwi+yEWRXux+/Oqp6185uz/eBtnOFQKfHuzeINsVnKa2ytpyEXlB1s2Puy/p/a//ffr9+eHmU7T+kP75t0uThZ3aXZetIMXvv/te3Sx991a+6+XKVz10zs1mWPzO091dx0yr9YjurmP8FY/vOmbx5CGbLYZSMQum81/f6rWXXp6FBTsgCcqcFPnze+DU/VKGt6Xk0exMKX3zdlG3qwda2c6OpO2KfH57zOcEdNljG2wrcKA99vgrHm2PbQx2rlDWBfL7v2+e01n+V/z49/Xs28L7+O3r42UVLdRr4XRGQy9zbKOzdjUT48nUUqlB1kaXN7p7ZqejDPIELSpIPju5ry63it3fooJbUefh2p/DKAjeXq4Xf3g/rB/J/6P470KL+jsxYNqi9nBwMdgaTZgl5ggsqnm6RRXjKdHF/RntpmzrWPdM2xXw3HYUu+0ZRKKm4CfmHPFX9FzO0TigPznnmfomdyp5dvRu/fX192Q2u3+9fHj6/ePt459f34R29I80XhFrEiXDtRca1nwCWylQgRbzye/zIzKevijXQYLxFIMo0R3VxvNA48nZv05r2qaGZzCeCLgCBguv9lstj6//6jK5Nr9I7pfdYXqbXHCfnlOFgUeYXcT/AJ8/2dGGl7zN0jSvf73o15bOQ/qN/wE=</diagram></mxfile>