1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 19:50:17 +01:00
Files
coach/rl_coach/presets/Doom_Basic_ACER.py
shadiendrawis 2b5d1dabe6 ACER algorithm (#184)
* initial ACER commit

* Code cleanup + several fixes

* Q-retrace bug fix + small clean-ups

* added documentation for acer

* ACER benchmarks

* update benchmarks table

* Add nightly running of golden and trace tests. (#202)

Resolves #200

* comment out nightly trace tests until values reset.

* remove redundant observe ignore (#168)

* ensure nightly test env containers exist. (#205)

Also bump integration test timeout

* wxPython removal (#207)

Replacing wxPython with Python's Tkinter.
Also removing the option to choose multiple files as it is unused and causes errors, and fixing the load file/directory spinner.

* Create CONTRIBUTING.md (#210)

* Create CONTRIBUTING.md.  Resolves #188

* run nightly golden tests sequentially. (#217)

Should reduce resource requirements and potential CPU contention but increases
overall execution time.

* tests: added new setup configuration + test args (#211)

- added utils for future tests and conftest
- added test args

* new docs build

* golden test update
2019-02-20 23:52:34 +02:00

56 lines
2.3 KiB
Python

from rl_coach.agents.acer_agent import ACERAgentParameters
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
from rl_coach.environments.doom_environment import DoomEnvironmentParameters
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.memories.memory import MemoryGranularity
from rl_coach.filters.filter import InputFilter
from rl_coach.filters.reward.reward_rescale_filter import RewardRescaleFilter
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(0)
#########
# Agent #
#########
agent_params = ACERAgentParameters()
agent_params.algorithm.num_steps_between_gradient_updates = 30
agent_params.algorithm.apply_gradients_every_x_episodes = 1
agent_params.network_wrappers['main'].learning_rate = 0.0001
agent_params.algorithm.ratio_of_replay = 4
agent_params.algorithm.num_transitions_to_start_replay = 2000
agent_params.memory.max_size = (MemoryGranularity.Transitions, 100000)
agent_params.input_filter = InputFilter()
agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(1/100.))
agent_params.algorithm.beta_entropy = 0.01
agent_params.network_wrappers['main'].clip_gradients = 40.
###############
# Environment #
###############
env_params = DoomEnvironmentParameters(level='basic')
########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.test = True
preset_validation_params.min_reward_threshold = 20
preset_validation_params.max_episodes_to_achieve_reward = 400
preset_validation_params.num_workers = 8
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=VisualizationParameters(),
preset_validation_params=preset_validation_params)