1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/presets/Atari_Dueling_DDQN_with_PER_OpenAI.py
2018-08-13 17:11:34 +03:00

58 lines
2.8 KiB
Python

from rl_coach.architectures.tensorflow_components.heads.dueling_q_head import DuelingQHeadParameters
from rl_coach.base_parameters import VisualizationParameters, MiddlewareScheme, PresetValidationParameters
from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod, SingleLevelSelection
from rl_coach.environments.gym_environment import Atari, atari_deterministic_v4
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplayParameters
from rl_coach.schedules import LinearSchedule, PieceWiseSchedule, ConstantSchedule
from rl_coach.agents.ddqn_agent import DDQNAgentParameters
from rl_coach.core_types import EnvironmentSteps, RunPhase
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = EnvironmentSteps(50000000)
schedule_params.steps_between_evaluation_periods = EnvironmentSteps(250000)
schedule_params.evaluation_steps = EnvironmentSteps(135000)
schedule_params.heatup_steps = EnvironmentSteps(50000)
#########
# Agent #
#########
agent_params = DDQNAgentParameters()
agent_params.network_wrappers['main'].learning_rate = 0.0001
agent_params.network_wrappers['main'].middleware_parameters.scheme = MiddlewareScheme.Empty
agent_params.network_wrappers['main'].heads_parameters = [DuelingQHeadParameters()]
agent_params.network_wrappers['main'].clip_gradients = 10
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(40000)
agent_params.exploration.epsilon_schedule = PieceWiseSchedule(
[(LinearSchedule(1, 0.1, 1000000), EnvironmentSteps(1000000)),
(LinearSchedule(0.1, 0.01, 10000000), EnvironmentSteps(1000000)),
(ConstantSchedule(0.001), EnvironmentSteps(10000000))]
)
agent_params.memory = PrioritizedExperienceReplayParameters()
agent_params.memory.beta = LinearSchedule(0.4, 1, 12500000) # 12.5M training iterations = 50M steps = 200M frames
###############
# Environment #
###############
env_params = Atari()
env_params.level = SingleLevelSelection(atari_deterministic_v4)
vis_params = VisualizationParameters()
vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()]
vis_params.dump_mp4 = False
########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.trace_test_levels = ['breakout', 'pong', 'alien']
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=vis_params,
preset_validation_params=preset_validation_params)