mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
79 lines
2.9 KiB
Python
79 lines
2.9 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from typing import List
|
|
|
|
import tensorflow as tf
|
|
|
|
from rl_coach.architectures.tensorflow_components.architecture import Conv2d, Dense
|
|
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedder
|
|
from rl_coach.base_parameters import EmbedderScheme
|
|
from rl_coach.core_types import InputImageEmbedding
|
|
|
|
|
|
class ImageEmbedder(InputEmbedder):
|
|
"""
|
|
An input embedder that performs convolutions on the input and then flattens the result.
|
|
The embedder is intended for image like inputs, where the channels are expected to be the last axis.
|
|
The embedder also allows custom rescaling of the input prior to the neural network.
|
|
"""
|
|
|
|
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
|
|
scheme: EmbedderScheme=EmbedderScheme.Medium, batchnorm: bool=False, dropout: bool=False,
|
|
name: str= "embedder", input_rescaling: float=255.0, input_offset: float=0.0, input_clipping=None,
|
|
dense_layer=Dense):
|
|
super().__init__(input_size, activation_function, scheme, batchnorm, dropout, name, input_rescaling,
|
|
input_offset, input_clipping, dense_layer=dense_layer)
|
|
self.return_type = InputImageEmbedding
|
|
if len(input_size) != 3 and scheme != EmbedderScheme.Empty:
|
|
raise ValueError("Image embedders expect the input size to have 3 dimensions. The given size is: {}"
|
|
.format(input_size))
|
|
|
|
@property
|
|
def schemes(self):
|
|
return {
|
|
EmbedderScheme.Empty:
|
|
[],
|
|
|
|
EmbedderScheme.Shallow:
|
|
[
|
|
Conv2d([32, 3, 1])
|
|
],
|
|
|
|
# atari dqn
|
|
EmbedderScheme.Medium:
|
|
[
|
|
Conv2d([32, 8, 4]),
|
|
Conv2d([64, 4, 2]),
|
|
Conv2d([64, 3, 1])
|
|
],
|
|
|
|
# carla
|
|
EmbedderScheme.Deep: \
|
|
[
|
|
Conv2d([32, 5, 2]),
|
|
Conv2d([32, 3, 1]),
|
|
Conv2d([64, 3, 2]),
|
|
Conv2d([64, 3, 1]),
|
|
Conv2d([128, 3, 2]),
|
|
Conv2d([128, 3, 1]),
|
|
Conv2d([256, 3, 2]),
|
|
Conv2d([256, 3, 1])
|
|
]
|
|
}
|
|
|
|
|