1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/architectures/tensorflow_components/middlewares/fc_middleware.py
2018-08-27 18:19:01 +03:00

89 lines
3.3 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union, List
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import batchnorm_activation_dropout, Dense
from rl_coach.architectures.tensorflow_components.middlewares.middleware import Middleware, MiddlewareParameters
from rl_coach.base_parameters import MiddlewareScheme
from rl_coach.core_types import Middleware_FC_Embedding
class FCMiddlewareParameters(MiddlewareParameters):
def __init__(self, activation_function='relu',
scheme: Union[List, MiddlewareScheme] = MiddlewareScheme.Medium,
batchnorm: bool = False, dropout: bool = False,
name="middleware_fc_embedder", dense_layer=Dense):
super().__init__(parameterized_class=FCMiddleware, activation_function=activation_function,
scheme=scheme, batchnorm=batchnorm, dropout=dropout, name=name, dense_layer=dense_layer)
class FCMiddleware(Middleware):
def __init__(self, activation_function=tf.nn.relu,
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
batchnorm: bool = False, dropout: bool = False,
name="middleware_fc_embedder", dense_layer=Dense):
super().__init__(activation_function=activation_function, batchnorm=batchnorm,
dropout=dropout, scheme=scheme, name=name, dense_layer=dense_layer)
self.return_type = Middleware_FC_Embedding
self.layers = []
def _build_module(self):
self.layers.append(self.input)
if isinstance(self.scheme, MiddlewareScheme):
layers_params = self.schemes[self.scheme]
else:
layers_params = self.scheme
for idx, layer_params in enumerate(layers_params):
self.layers.append(
layer_params(self.layers[-1], name='{}_{}'.format(layer_params.__class__.__name__, idx))
)
self.layers.extend(batchnorm_activation_dropout(self.layers[-1], self.batchnorm,
self.activation_function, self.dropout,
self.dropout_rate, idx))
self.output = self.layers[-1]
@property
def schemes(self):
return {
MiddlewareScheme.Empty:
[],
# ppo
MiddlewareScheme.Shallow:
[
self.dense_layer([64])
],
# dqn
MiddlewareScheme.Medium:
[
self.dense_layer([512])
],
MiddlewareScheme.Deep: \
[
self.dense_layer([128]),
self.dense_layer([128]),
self.dense_layer([128])
]
}