mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
117 lines
4.8 KiB
Python
117 lines
4.8 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from rl_coach.architectures.tensorflow_components.architecture import batchnorm_activation_dropout, Dense
|
|
from rl_coach.architectures.tensorflow_components.middlewares.middleware import Middleware, MiddlewareParameters
|
|
from rl_coach.base_parameters import MiddlewareScheme
|
|
from rl_coach.core_types import Middleware_LSTM_Embedding
|
|
|
|
|
|
class LSTMMiddlewareParameters(MiddlewareParameters):
|
|
def __init__(self, activation_function='relu', number_of_lstm_cells=256,
|
|
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
|
|
batchnorm: bool = False, dropout: bool = False,
|
|
name="middleware_lstm_embedder", dense_layer=Dense):
|
|
super().__init__(parameterized_class=LSTMMiddleware, activation_function=activation_function,
|
|
scheme=scheme, batchnorm=batchnorm, dropout=dropout, name=name, dense_layer=dense_layer)
|
|
self.number_of_lstm_cells = number_of_lstm_cells
|
|
|
|
|
|
class LSTMMiddleware(Middleware):
|
|
def __init__(self, activation_function=tf.nn.relu, number_of_lstm_cells: int=256,
|
|
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
|
|
batchnorm: bool = False, dropout: bool = False,
|
|
name="middleware_lstm_embedder", dense_layer=Dense):
|
|
super().__init__(activation_function=activation_function, batchnorm=batchnorm,
|
|
dropout=dropout, scheme=scheme, name=name, dense_layer=dense_layer)
|
|
self.return_type = Middleware_LSTM_Embedding
|
|
self.number_of_lstm_cells = number_of_lstm_cells
|
|
self.layers = []
|
|
|
|
def _build_module(self):
|
|
"""
|
|
self.state_in: tuple of placeholders containing the initial state
|
|
self.state_out: tuple of output state
|
|
|
|
todo: it appears that the shape of the output is batch, feature
|
|
the code here seems to be slicing off the first element in the batch
|
|
which would definitely be wrong. need to double check the shape
|
|
"""
|
|
|
|
self.layers.append(self.input)
|
|
|
|
# optionally insert some dense layers before the LSTM
|
|
if isinstance(self.scheme, MiddlewareScheme):
|
|
layers_params = self.schemes[self.scheme]
|
|
else:
|
|
layers_params = self.scheme
|
|
for idx, layer_params in enumerate(layers_params):
|
|
self.layers.append(
|
|
tf.layers.dense(self.layers[-1], layer_params[0], name='fc{}'.format(idx))
|
|
)
|
|
|
|
self.layers.extend(batchnorm_activation_dropout(self.layers[-1], self.batchnorm,
|
|
self.activation_function, self.dropout,
|
|
self.dropout_rate, idx))
|
|
|
|
# add the LSTM layer
|
|
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(self.number_of_lstm_cells, state_is_tuple=True)
|
|
self.c_init = np.zeros((1, lstm_cell.state_size.c), np.float32)
|
|
self.h_init = np.zeros((1, lstm_cell.state_size.h), np.float32)
|
|
self.state_init = [self.c_init, self.h_init]
|
|
self.c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c])
|
|
self.h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h])
|
|
self.state_in = (self.c_in, self.h_in)
|
|
rnn_in = tf.expand_dims(self.layers[-1], [0])
|
|
step_size = tf.shape(self.layers[-1])[:1]
|
|
state_in = tf.nn.rnn_cell.LSTMStateTuple(self.c_in, self.h_in)
|
|
lstm_outputs, lstm_state = tf.nn.dynamic_rnn(
|
|
lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size, time_major=False)
|
|
lstm_c, lstm_h = lstm_state
|
|
self.state_out = (lstm_c[:1, :], lstm_h[:1, :])
|
|
self.output = tf.reshape(lstm_outputs, [-1, self.number_of_lstm_cells])
|
|
|
|
@property
|
|
def schemes(self):
|
|
return {
|
|
MiddlewareScheme.Empty:
|
|
[],
|
|
|
|
# ppo
|
|
MiddlewareScheme.Shallow:
|
|
[
|
|
[64]
|
|
],
|
|
|
|
# dqn
|
|
MiddlewareScheme.Medium:
|
|
[
|
|
[512]
|
|
],
|
|
|
|
MiddlewareScheme.Deep: \
|
|
[
|
|
[128],
|
|
[128],
|
|
[128]
|
|
]
|
|
}
|
|
|