1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/schedules.py
2018-08-13 17:11:34 +03:00

126 lines
4.8 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List, Tuple
import numpy as np
from rl_coach.core_types import EnvironmentSteps
class Schedule(object):
def __init__(self, initial_value: float):
self.initial_value = initial_value
self.current_value = initial_value
def step(self):
raise NotImplementedError("")
class ConstantSchedule(Schedule):
def __init__(self, initial_value: float):
super().__init__(initial_value)
def step(self):
pass
class LinearSchedule(Schedule):
"""
A simple linear schedule which decreases or increases over time from an initial to a final value
"""
def __init__(self, initial_value: float, final_value: float, decay_steps: int):
"""
:param initial_value: the initial value
:param final_value: the final value
:param decay_steps: the number of steps that are required to decay the initial value to the final value
"""
super().__init__(initial_value)
self.final_value = final_value
self.decay_steps = decay_steps
self.decay_delta = (initial_value - final_value) / float(decay_steps)
def step(self):
self.current_value -= self.decay_delta
# decreasing schedule
if self.final_value < self.initial_value:
self.current_value = np.clip(self.current_value, self.final_value, self.initial_value)
# increasing schedule
if self.final_value > self.initial_value:
self.current_value = np.clip(self.current_value, self.initial_value, self.final_value)
class PieceWiseSchedule(Schedule):
"""
A schedule which consists of multiple sub-schedules, where each one is used for a defined number of steps
"""
def __init__(self, schedules: List[Tuple[Schedule, EnvironmentSteps]]):
"""
:param schedules: a list of schedules to apply serially. Each element of the list should be a tuple of
2 elements - a schedule and the number of steps to run it in terms of EnvironmentSteps
"""
super().__init__(schedules[0][0].initial_value)
self.schedules = schedules
self.current_schedule = schedules[0]
self.current_schedule_idx = 0
self.current_schedule_step_count = 0
def step(self):
self.current_schedule[0].step()
if self.current_schedule_idx < len(self.schedules) - 1 \
and self.current_schedule_step_count >= self.current_schedule[1].num_steps:
self.current_schedule_idx += 1
self.current_schedule = self.schedules[self.current_schedule_idx]
self.current_schedule_step_count = 0
self.current_value = self.current_schedule[0].current_value
self.current_schedule_step_count += 1
class ExponentialSchedule(Schedule):
"""
A simple exponential schedule which decreases or increases over time from an initial to a final value
"""
def __init__(self, initial_value: float, final_value: float, decay_coefficient: float):
"""
:param initial_value: the initial value
:param final_value: the final value
:param decay_coefficient: the exponential decay coefficient
"""
super().__init__(initial_value)
self.initial_value = initial_value
self.final_value = final_value
self.decay_coefficient = decay_coefficient
self.current_step = 0
self.current_value = self.initial_value
if decay_coefficient < 1 and final_value > initial_value:
raise ValueError("The final value should be lower than the initial value when the decay coefficient < 1")
if decay_coefficient > 1 and initial_value > final_value:
raise ValueError("The final value should be higher than the initial value when the decay coefficient > 1")
def step(self):
self.current_value *= self.decay_coefficient
# decreasing schedule
if self.final_value < self.initial_value:
self.current_value = np.clip(self.current_value, self.final_value, self.initial_value)
# increasing schedule
if self.final_value > self.initial_value:
self.current_value = np.clip(self.current_value, self.initial_value, self.final_value)
self.current_step += 1