1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/architectures/neon_components/heads.py
Roman Dobosz 1b095aeeca Cleanup imports.
Till now, most of the modules were importing all of the module objects
(variables, classes, functions, other imports) into module namespace,
which potentially could (and was) cause of unintentional use of class or
methods, which was indirect imported.

With this patch, all the star imports were substituted with top-level
module, which provides desired class or function.

Besides, all imports where sorted (where possible) in a way pep8[1]
suggests - first are imports from standard library, than goes third
party imports (like numpy, tensorflow etc) and finally coach modules.
All of those sections are separated by one empty line.

[1] https://www.python.org/dev/peps/pep-0008/#imports
2018-04-13 09:58:40 +02:00

193 lines
8.2 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import ngraph as ng
from ngraph.frontends import neon
from ngraph.util import names as ngraph_names
import utils
from architectures.neon_components import losses
class Head(object):
def __init__(self, tuning_parameters, head_idx=0, loss_weight=1., is_local=True):
self.head_idx = head_idx
self.name = "head"
self.output = []
self.loss = []
self.loss_type = []
self.regularizations = []
self.loss_weight = utils.force_list(loss_weight)
self.weights_init = neon.GlorotInit()
self.biases_init = neon.ConstantInit()
self.target = []
self.input = []
self.is_local = is_local
self.batch_size = tuning_parameters.batch_size
def __call__(self, input_layer):
"""
Wrapper for building the module graph including scoping and loss creation
:param input_layer: the input to the graph
:return: the output of the last layer and the target placeholder
"""
with ngraph_names.name_scope(self.get_name()):
self._build_module(input_layer)
self.output = utils.force_list(self.output)
self.target = utils.force_list(self.target)
self.input = utils.force_list(self.input)
self.loss_type = utils.force_list(self.loss_type)
self.loss = utils.force_list(self.loss)
self.regularizations = utils.force_list(self.regularizations)
if self.is_local:
self.set_loss()
if self.is_local:
return self.output, self.target, self.input
else:
return self.output, self.input
def _build_module(self, input_layer):
"""
Builds the graph of the module
:param input_layer: the input to the graph
:return: None
"""
pass
def get_name(self):
"""
Get a formatted name for the module
:return: the formatted name
"""
return '{}_{}'.format(self.name, self.head_idx)
def set_loss(self):
"""
Creates a target placeholder and loss function for each loss_type and regularization
:param loss_type: a tensorflow loss function
:param scope: the name scope to include the tensors in
:return: None
"""
# add losses and target placeholder
for idx in range(len(self.loss_type)):
# output_axis = ng.make_axis(self.num_actions, name='q_values')
batch_axis_full = ng.make_axis(self.batch_size, name='N')
target = ng.placeholder(ng.make_axes([self.output[0].axes[0], batch_axis_full]))
self.target.append(target)
loss = self.loss_type[idx](self.target[-1], self.output[idx],
weights=self.loss_weight[idx], scope=self.get_name())
self.loss.append(loss)
# add regularizations
for regularization in self.regularizations:
self.loss.append(regularization)
class QHead(Head):
def __init__(self, tuning_parameters, head_idx=0, loss_weight=1., is_local=True):
Head.__init__(self, tuning_parameters, head_idx, loss_weight, is_local)
self.name = 'q_values_head'
self.num_actions = tuning_parameters.env_instance.action_space_size
if tuning_parameters.agent.replace_mse_with_huber_loss:
raise Exception("huber loss is not supported in neon")
else:
self.loss_type = losses.mean_squared_error
def _build_module(self, input_layer):
# Standard Q Network
self.output = neon.Sequential([
neon.Affine(nout=self.num_actions,
weight_init=self.weights_init, bias_init=self.biases_init)
])(input_layer)
class DuelingQHead(QHead):
def __init__(self, tuning_parameters, head_idx=0, loss_weight=1., is_local=True):
QHead.__init__(self, tuning_parameters, head_idx, loss_weight, is_local)
def _build_module(self, input_layer):
# Dueling Network
# state value tower - V
output_axis = ng.make_axis(self.num_actions, name='q_values')
state_value = neon.Sequential([
neon.Affine(nout=256, activation=neon.Rectlin(),
weight_init=self.weights_init, bias_init=self.biases_init),
neon.Affine(nout=1,
weight_init=self.weights_init, bias_init=self.biases_init)
])(input_layer)
# action advantage tower - A
action_advantage_unnormalized = neon.Sequential([
neon.Affine(nout=256, activation=neon.Rectlin(),
weight_init=self.weights_init, bias_init=self.biases_init),
neon.Affine(axes=output_axis,
weight_init=self.weights_init, bias_init=self.biases_init)
])(input_layer)
action_advantage = action_advantage_unnormalized - ng.mean(action_advantage_unnormalized)
repeated_state_value = ng.expand_dims(ng.slice_along_axis(state_value, state_value.axes[0], 0), output_axis, 0)
# merge to state-action value function Q
self.output = repeated_state_value + action_advantage
class MeasurementsPredictionHead(Head):
def __init__(self, tuning_parameters, head_idx=0, loss_weight=1., is_local=True):
Head.__init__(self, tuning_parameters, head_idx, loss_weight, is_local)
self.name = 'future_measurements_head'
self.num_actions = tuning_parameters.env_instance.action_space_size
self.num_measurements = tuning_parameters.env.measurements_size[0] \
if tuning_parameters.env.measurements_size else 0
self.num_prediction_steps = tuning_parameters.agent.num_predicted_steps_ahead
self.multi_step_measurements_size = self.num_measurements * self.num_prediction_steps
if tuning_parameters.agent.replace_mse_with_huber_loss:
raise Exception("huber loss is not supported in neon")
else:
self.loss_type = losses.mean_squared_error
def _build_module(self, input_layer):
# This is almost exactly the same as Dueling Network but we predict the future measurements for each action
multistep_measurements_size = self.measurements_size[0] * self.num_predicted_steps_ahead
# actions expectation tower (expectation stream) - E
with ngraph_names.name_scope("expectation_stream"):
expectation_stream = neon.Sequential([
neon.Affine(nout=256, activation=neon.Rectlin(),
weight_init=self.weights_init, bias_init=self.biases_init),
neon.Affine(nout=multistep_measurements_size,
weight_init=self.weights_init, bias_init=self.biases_init)
])(input_layer)
# action fine differences tower (action stream) - A
with ngraph_names.name_scope("action_stream"):
action_stream_unnormalized = neon.Sequential([
neon.Affine(nout=256, activation=neon.Rectlin(),
weight_init=self.weights_init, bias_init=self.biases_init),
neon.Affine(nout=self.num_actions * multistep_measurements_size,
weight_init=self.weights_init, bias_init=self.biases_init),
neon.Reshape((self.num_actions, multistep_measurements_size))
])(input_layer)
action_stream = action_stream_unnormalized - ng.mean(action_stream_unnormalized)
repeated_expectation_stream = ng.slice_along_axis(expectation_stream, expectation_stream.axes[0], 0)
repeated_expectation_stream = ng.expand_dims(repeated_expectation_stream, output_axis, 0)
# merge to future measurements predictions
self.output = repeated_expectation_stream + action_stream