1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/environments/doom_environment_wrapper.py
Roman Dobosz 1b095aeeca Cleanup imports.
Till now, most of the modules were importing all of the module objects
(variables, classes, functions, other imports) into module namespace,
which potentially could (and was) cause of unintentional use of class or
methods, which was indirect imported.

With this patch, all the star imports were substituted with top-level
module, which provides desired class or function.

Besides, all imports where sorted (where possible) in a way pep8[1]
suggests - first are imports from standard library, than goes third
party imports (like numpy, tensorflow etc) and finally coach modules.
All of those sections are separated by one empty line.

[1] https://www.python.org/dev/peps/pep-0008/#imports
2018-04-13 09:58:40 +02:00

164 lines
5.7 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import enum
import os
import numpy as np
import logger
try:
import vizdoom
except ImportError:
logger.failed_imports.append("ViZDoom")
from environments import environment_wrapper as ew
import utils
# enum of the available levels and their path
class DoomLevel(utils.Enum):
BASIC = "basic.cfg"
DEFEND = "defend_the_center.cfg"
DEATHMATCH = "deathmatch.cfg"
MY_WAY_HOME = "my_way_home.cfg"
TAKE_COVER = "take_cover.cfg"
HEALTH_GATHERING = "health_gathering.cfg"
HEALTH_GATHERING_SUPREME = "health_gathering_supreme.cfg"
DEFEND_THE_LINE = "defend_the_line.cfg"
DEADLY_CORRIDOR = "deadly_corridor.cfg"
key_map = {
'NO-OP': 96, # `
'ATTACK': 13, # enter
'CROUCH': 306, # ctrl
'DROP_SELECTED_ITEM': ord("t"),
'DROP_SELECTED_WEAPON': ord("t"),
'JUMP': 32, # spacebar
'LAND': ord("l"),
'LOOK_DOWN': 274, # down arrow
'LOOK_UP': 273, # up arrow
'MOVE_BACKWARD': ord("s"),
'MOVE_DOWN': ord("s"),
'MOVE_FORWARD': ord("w"),
'MOVE_LEFT': 276,
'MOVE_RIGHT': 275,
'MOVE_UP': ord("w"),
'RELOAD': ord("r"),
'SELECT_NEXT_WEAPON': ord("q"),
'SELECT_PREV_WEAPON': ord("e"),
'SELECT_WEAPON0': ord("0"),
'SELECT_WEAPON1': ord("1"),
'SELECT_WEAPON2': ord("2"),
'SELECT_WEAPON3': ord("3"),
'SELECT_WEAPON4': ord("4"),
'SELECT_WEAPON5': ord("5"),
'SELECT_WEAPON6': ord("6"),
'SELECT_WEAPON7': ord("7"),
'SELECT_WEAPON8': ord("8"),
'SELECT_WEAPON9': ord("9"),
'SPEED': 304, # shift
'STRAFE': 9, # tab
'TURN180': ord("u"),
'TURN_LEFT': ord("a"), # left arrow
'TURN_RIGHT': ord("d"), # right arrow
'USE': ord("f"),
}
class DoomEnvironmentWrapper(ew.EnvironmentWrapper):
def __init__(self, tuning_parameters):
ew.EnvironmentWrapper.__init__(self, tuning_parameters)
# load the emulator with the required level
self.level = DoomLevel().get(self.tp.env.level)
self.scenarios_dir = os.path.join(os.environ.get('VIZDOOM_ROOT'),
'scenarios')
self.game = vizdoom.DoomGame()
self.game.load_config(os.path.join(self.scenarios_dir, self.level))
self.game.set_window_visible(False)
self.game.add_game_args("+vid_forcesurface 1")
self.wait_for_explicit_human_action = True
if self.human_control:
self.game.set_screen_resolution(vizdoom.ScreenResolution.RES_640X480)
self.renderer.create_screen(640, 480)
elif self.is_rendered:
self.game.set_screen_resolution(vizdoom.ScreenResolution.RES_320X240)
self.renderer.create_screen(320, 240)
else:
# lower resolution since we actually take only 76x60 and we don't need to render
self.game.set_screen_resolution(vizdoom.ScreenResolution.RES_160X120)
self.game.set_render_hud(False)
self.game.set_render_crosshair(False)
self.game.set_render_decals(False)
self.game.set_render_particles(False)
self.game.init()
# action space
self.action_space_abs_range = 0
self.actions = {}
self.action_space_size = self.game.get_available_buttons_size() + 1
self.action_vector_size = self.action_space_size - 1
self.actions[0] = [0] * self.action_vector_size
for action_idx in range(self.action_vector_size):
self.actions[action_idx + 1] = [0] * self.action_vector_size
self.actions[action_idx + 1][action_idx] = 1
self.actions_description = ['NO-OP']
self.actions_description += [str(action).split(".")[1] for action in self.game.get_available_buttons()]
for idx, action in enumerate(self.actions_description):
if action in key_map.keys():
self.key_to_action[(key_map[action],)] = idx
# measurement
self.measurements_size = self.game.get_state().game_variables.shape
self.width = self.game.get_screen_width()
self.height = self.game.get_screen_height()
if self.tp.seed is not None:
self.game.set_seed(self.tp.seed)
self.reset()
def _update_state(self):
# extract all data from the current state
state = self.game.get_state()
if state is not None and state.screen_buffer is not None:
self.observation = {
'observation': state.screen_buffer,
'measurements': state.game_variables,
}
self.reward = self.game.get_last_reward()
self.done = self.game.is_episode_finished()
def _take_action(self, action_idx):
self.game.make_action(self._idx_to_action(action_idx), self.frame_skip)
def _preprocess_observation(self, observation):
if observation is None:
return None
# for the last step we get no new observation, so we shouldn't preprocess it
if self.done:
return observation
# move the channel to the last axis
observation = np.transpose(observation, (1, 2, 0))
return observation
def _restart_environment_episode(self, force_environment_reset=False):
self.game.new_episode()