1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/agents/bootstrapped_dqn_agent.py
Gal Leibovich 1d4c3455e7 coach v0.8.0
2017-10-19 13:10:15 +03:00

59 lines
2.6 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from agents.value_optimization_agent import *
# Bootstrapped DQN - https://arxiv.org/pdf/1602.04621.pdf
class BootstrappedDQNAgent(ValueOptimizationAgent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
def reset_game(self, do_not_reset_env=False):
ValueOptimizationAgent.reset_game(self, do_not_reset_env)
self.exploration_policy.select_head()
def learn_from_batch(self, batch):
current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch)
# for the action we actually took, the error is:
# TD error = r + discount*max(q_st_plus_1) - q_st
# for all other actions, the error is 0
q_st_plus_1 = self.main_network.target_network.predict(next_states)
# initialize with the current prediction so that we will
TD_targets = self.main_network.online_network.predict(current_states)
# only update the action that we have actually done in this transition
for i in range(self.tp.batch_size):
mask = batch[i].info['mask']
for head_idx in range(self.tp.exploration.architecture_num_q_heads):
if mask[head_idx] == 1:
TD_targets[head_idx][i, actions[i]] = rewards[i] + \
(1.0 - game_overs[i]) * self.tp.agent.discount * np.max(
q_st_plus_1[head_idx][i], 0)
result = self.main_network.train_and_sync_networks(current_states, TD_targets)
total_loss = result[0]
return total_loss
def act(self, phase=RunPhase.TRAIN):
ValueOptimizationAgent.act(self, phase)
mask = np.random.binomial(1, self.tp.exploration.bootstrapped_data_sharing_probability,
self.tp.exploration.architecture_num_q_heads)
self.memory.update_last_transition_info({'mask': mask})