mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
81 lines
3.1 KiB
Python
81 lines
3.1 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
|
|
|
|
class SharedRunningStats(object):
|
|
def __init__(self, tuning_parameters, replicated_device, epsilon=1e-2, shape=(), name=""):
|
|
self.tp = tuning_parameters
|
|
with tf.device(replicated_device):
|
|
with tf.variable_scope(name):
|
|
self._sum = tf.get_variable(
|
|
dtype=tf.float64,
|
|
shape=shape,
|
|
initializer=tf.constant_initializer(0.0),
|
|
name="running_sum", trainable=False)
|
|
self._sum_squared = tf.get_variable(
|
|
dtype=tf.float64,
|
|
shape=shape,
|
|
initializer=tf.constant_initializer(epsilon),
|
|
name="running_sum_squared", trainable=False)
|
|
self._count = tf.get_variable(
|
|
dtype=tf.float64,
|
|
shape=(),
|
|
initializer=tf.constant_initializer(epsilon),
|
|
name="count", trainable=False)
|
|
|
|
self._shape = shape
|
|
self._mean = tf.to_float(self._sum / self._count)
|
|
self._std = tf.sqrt(tf.maximum(tf.to_float(self._sum_squared / self._count) - tf.square(self._mean), 1e-2))
|
|
|
|
self.new_sum = tf.placeholder(shape=self.shape, dtype=tf.float64, name='sum')
|
|
self.new_sum_squared = tf.placeholder(shape=self.shape, dtype=tf.float64, name='var')
|
|
self.newcount = tf.placeholder(shape=[], dtype=tf.float64, name='count')
|
|
|
|
self._inc_sum = tf.assign_add(self._sum, self.new_sum, use_locking=True)
|
|
self._inc_sum_squared = tf.assign_add(self._sum_squared, self.new_sum_squared, use_locking=True)
|
|
self._inc_count = tf.assign_add(self._count, self.newcount, use_locking=True)
|
|
|
|
def push(self, x):
|
|
x = x.astype('float64')
|
|
self.tp.sess.run([self._inc_sum, self._inc_sum_squared, self._inc_count],
|
|
feed_dict={
|
|
self.new_sum: x.sum(axis=0).ravel(),
|
|
self.new_sum_squared: np.square(x).sum(axis=0).ravel(),
|
|
self.newcount: np.array(len(x), dtype='float64')
|
|
})
|
|
|
|
@property
|
|
def n(self):
|
|
return self.tp.sess.run(self._count)
|
|
|
|
@property
|
|
def mean(self):
|
|
return self.tp.sess.run(self._mean)
|
|
|
|
@property
|
|
def var(self):
|
|
return self.std ** 2
|
|
|
|
@property
|
|
def std(self):
|
|
return self.tp.sess.run(self._std)
|
|
|
|
@property
|
|
def shape(self):
|
|
return self._shape |