1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00
Files
coach/rl_coach/presets/CartPole_NEC.py
2018-08-13 17:11:34 +03:00

58 lines
2.3 KiB
Python

from rl_coach.agents.nec_agent import NECAgentParameters
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
from rl_coach.environments.environment import SelectedPhaseOnlyDumpMethod, MaxDumpMethod
from rl_coach.environments.gym_environment import Atari, MujocoInputFilter
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.memories.memory import MemoryGranularity
from rl_coach.schedules import LinearSchedule
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase
from rl_coach.filters.reward.reward_rescale_filter import RewardRescaleFilter
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(1300)
#########
# Agent #
#########
agent_params = NECAgentParameters()
agent_params.network_wrappers['main'].learning_rate = 0.00025
agent_params.exploration.epsilon_schedule = LinearSchedule(0.5, 0.1, 1000)
agent_params.exploration.evaluation_epsilon = 0
agent_params.algorithm.discount = 0.99
agent_params.memory.max_size = (MemoryGranularity.Episodes, 200)
agent_params.input_filter = MujocoInputFilter()
agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(1/200.))
###############
# Environment #
###############
env_params = Atari()
env_params.level = 'CartPole-v0'
vis_params = VisualizationParameters()
vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()]
vis_params.dump_mp4 = False
########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.test = True
preset_validation_params.min_reward_threshold = 150
preset_validation_params.max_episodes_to_achieve_reward = 300
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=vis_params,
preset_validation_params=preset_validation_params)