1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/architectures/tensorflow_components/layers.py
Guy Jacob 235a259223 Add Flatten layer to architectures + make flatten optional in embedders (#483)
Flatten layer required for embedders that mix conv and dense
(Cherry picking from #478)
2021-05-12 11:11:10 +03:00

290 lines
10 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import math
from types import FunctionType
import tensorflow as tf
from rl_coach.architectures import layers
from rl_coach.architectures.tensorflow_components import utils
def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dropout_rate, is_training, name):
layers = [input_layer]
# Rationale: passing a bool here will mean that batchnorm and or activation will never activate
assert not isinstance(is_training, bool)
# batchnorm
if batchnorm:
layers.append(
tf.layers.batch_normalization(layers[-1], name="{}_batchnorm".format(name), training=is_training)
)
# activation
if activation_function:
if isinstance(activation_function, str):
activation_function = utils.get_activation_function(activation_function)
layers.append(
activation_function(layers[-1], name="{}_activation".format(name))
)
# dropout
if dropout_rate > 0:
layers.append(
tf.layers.dropout(layers[-1], dropout_rate, name="{}_dropout".format(name), training=is_training)
)
# remove the input layer from the layers list
del layers[0]
return layers
# define global dictionary for storing layer type to layer implementation mapping
tf_layer_dict = dict()
tf_layer_class_dict = dict()
def reg_to_tf_instance(layer_type) -> FunctionType:
""" function decorator that registers layer implementation
:return: decorated function
"""
def reg_impl_decorator(func):
assert layer_type not in tf_layer_dict
tf_layer_dict[layer_type] = func
return func
return reg_impl_decorator
def reg_to_tf_class(layer_type) -> FunctionType:
""" function decorator that registers layer type
:return: decorated function
"""
def reg_impl_decorator(func):
assert layer_type not in tf_layer_class_dict
tf_layer_class_dict[layer_type] = func
return func
return reg_impl_decorator
def convert_layer(layer):
"""
If layer instance is callable (meaning this is already a concrete TF class), return layer, otherwise convert to TF type
:param layer: layer to be converted
:return: converted layer if not callable, otherwise layer itself
"""
if callable(layer):
return layer
return tf_layer_dict[type(layer)](layer)
def convert_layer_class(layer_class):
"""
If layer instance is callable, return layer, otherwise convert to TF type
:param layer: layer to be converted
:return: converted layer if not callable, otherwise layer itself
"""
if hasattr(layer_class, 'to_tf_instance'):
return layer_class
else:
return tf_layer_class_dict[layer_class]()
class Conv2d(layers.Conv2d):
def __init__(self, num_filters: int, kernel_size: int, strides: int):
super(Conv2d, self).__init__(num_filters=num_filters, kernel_size=kernel_size, strides=strides)
def __call__(self, input_layer, name: str=None, is_training=None):
"""
returns a tensorflow conv2d layer
:param input_layer: previous layer
:param name: layer name
:return: conv2d layer
"""
return tf.layers.conv2d(input_layer, filters=self.num_filters, kernel_size=self.kernel_size,
strides=self.strides, data_format='channels_last', name=name)
@staticmethod
@reg_to_tf_instance(layers.Conv2d)
def to_tf_instance(base: layers.Conv2d):
return Conv2d(
num_filters=base.num_filters,
kernel_size=base.kernel_size,
strides=base.strides)
@staticmethod
@reg_to_tf_class(layers.Conv2d)
def to_tf_class():
return Conv2d
class BatchnormActivationDropout(layers.BatchnormActivationDropout):
def __init__(self, batchnorm: bool=False, activation_function=None, dropout_rate: float=0):
super(BatchnormActivationDropout, self).__init__(
batchnorm=batchnorm, activation_function=activation_function, dropout_rate=dropout_rate)
def __call__(self, input_layer, name: str=None, is_training=None):
"""
returns a list of tensorflow batchnorm, activation and dropout layers
:param input_layer: previous layer
:param name: layer name
:return: batchnorm, activation and dropout layers
"""
return batchnorm_activation_dropout(input_layer, batchnorm=self.batchnorm,
activation_function=self.activation_function,
dropout_rate=self.dropout_rate,
is_training=is_training, name=name)
@staticmethod
@reg_to_tf_instance(layers.BatchnormActivationDropout)
def to_tf_instance(base: layers.BatchnormActivationDropout):
return BatchnormActivationDropout, BatchnormActivationDropout(
batchnorm=base.batchnorm,
activation_function=base.activation_function,
dropout_rate=base.dropout_rate)
@staticmethod
@reg_to_tf_class(layers.BatchnormActivationDropout)
def to_tf_class():
return BatchnormActivationDropout
class Dense(layers.Dense):
def __init__(self, units: int):
super(Dense, self).__init__(units=units)
def __call__(self, input_layer, name: str=None, kernel_initializer=None, bias_initializer=None,
activation=None, is_training=None):
"""
returns a tensorflow dense layer
:param input_layer: previous layer
:param name: layer name
:return: dense layer
"""
if bias_initializer is None:
bias_initializer = tf.zeros_initializer()
return tf.layers.dense(input_layer, self.units, name=name, kernel_initializer=kernel_initializer,
activation=activation, bias_initializer=bias_initializer)
@staticmethod
@reg_to_tf_instance(layers.Dense)
def to_tf_instance(base: layers.Dense):
return Dense(units=base.units)
@staticmethod
@reg_to_tf_class(layers.Dense)
def to_tf_class():
return Dense
class NoisyNetDense(layers.NoisyNetDense):
"""
A factorized Noisy Net layer
https://arxiv.org/abs/1706.10295.
"""
def __init__(self, units: int):
super(NoisyNetDense, self).__init__(units=units)
def __call__(self, input_layer, name: str, kernel_initializer=None, activation=None, is_training=None,
bias_initializer=None):
"""
returns a NoisyNet dense layer
:param input_layer: previous layer
:param name: layer name
:param kernel_initializer: initializer for kernels. Default is to use Gaussian noise that preserves stddev.
:param activation: the activation function
:return: dense layer
"""
#TODO: noise sampling should be externally controlled. DQN is fine with sampling noise for every
# forward (either act or train, both for online and target networks).
# A3C, on the other hand, should sample noise only when policy changes (i.e. after every t_max steps)
def _f(values):
return tf.sqrt(tf.abs(values)) * tf.sign(values)
def _factorized_noise(inputs, outputs):
# TODO: use factorized noise only for compute intensive algos (e.g. DQN).
# lighter algos (e.g. DQN) should not use it
noise1 = _f(tf.random_normal((inputs, 1)))
noise2 = _f(tf.random_normal((1, outputs)))
return tf.matmul(noise1, noise2)
num_inputs = input_layer.get_shape()[-1].value
num_outputs = self.units
stddev = 1 / math.sqrt(num_inputs)
activation = activation if activation is not None else (lambda x: x)
if kernel_initializer is None:
kernel_mean_initializer = tf.random_uniform_initializer(-stddev, stddev)
kernel_stddev_initializer = tf.random_uniform_initializer(-stddev * self.sigma0, stddev * self.sigma0)
else:
kernel_mean_initializer = kernel_stddev_initializer = kernel_initializer
if bias_initializer is None:
bias_initializer = tf.zeros_initializer()
with tf.variable_scope(None, default_name=name):
weight_mean = tf.get_variable('weight_mean', shape=(num_inputs, num_outputs),
initializer=kernel_mean_initializer)
bias_mean = tf.get_variable('bias_mean', shape=(num_outputs,), initializer=bias_initializer)
weight_stddev = tf.get_variable('weight_stddev', shape=(num_inputs, num_outputs),
initializer=kernel_stddev_initializer)
bias_stddev = tf.get_variable('bias_stddev', shape=(num_outputs,),
initializer=kernel_stddev_initializer)
bias_noise = _f(tf.random_normal((num_outputs,)))
weight_noise = _factorized_noise(num_inputs, num_outputs)
bias = bias_mean + bias_stddev * bias_noise
weight = weight_mean + weight_stddev * weight_noise
return activation(tf.matmul(input_layer, weight) + bias)
@staticmethod
@reg_to_tf_instance(layers.NoisyNetDense)
def to_tf_instance(base: layers.NoisyNetDense):
return NoisyNetDense(units=base.units)
@staticmethod
@reg_to_tf_class(layers.NoisyNetDense)
def to_tf_class():
return NoisyNetDense
class Flatten(layers.Flatten):
def __init__(self):
super(Flatten, self).__init__()
def __call__(self, input_layer, **kwargs):
"""
returns a tensorflow flatten layer
:param input_layer: previous layer
:return: flatten layer
"""
return tf.contrib.layers.flatten(input_layer)
@staticmethod
@reg_to_tf_instance(layers.Flatten)
def to_tf_instance(base: layers.Flatten):
return Flatten()
@staticmethod
@reg_to_tf_class(layers.Flatten)
def to_tf_class():
return Flatten