mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 03:30:19 +01:00
292 lines
12 KiB
Python
292 lines
12 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import pickle
|
|
|
|
import numpy as np
|
|
try:
|
|
import annoy
|
|
from annoy import AnnoyIndex
|
|
except ImportError:
|
|
from rl_coach.logger import failed_imports
|
|
failed_imports.append("annoy")
|
|
|
|
|
|
class AnnoyDictionary(object):
|
|
def __init__(self, dict_size, key_width, new_value_shift_coefficient=0.1, batch_size=100, key_error_threshold=0.01,
|
|
num_neighbors=50, override_existing_keys=True, rebuild_on_every_update=False):
|
|
self.rebuild_on_every_update = rebuild_on_every_update
|
|
self.max_size = dict_size
|
|
self.curr_size = 0
|
|
self.new_value_shift_coefficient = new_value_shift_coefficient
|
|
self.num_neighbors = num_neighbors
|
|
self.override_existing_keys = override_existing_keys
|
|
|
|
self.index = AnnoyIndex(key_width, metric='euclidean')
|
|
self.index.set_seed(1)
|
|
|
|
self.embeddings = np.zeros((dict_size, key_width))
|
|
self.values = np.zeros(dict_size)
|
|
self.additional_data = [None] * dict_size
|
|
|
|
self.lru_timestamps = np.zeros(dict_size)
|
|
self.current_timestamp = 0.0
|
|
|
|
# keys that are in this distance will be considered as the same key
|
|
self.key_error_threshold = key_error_threshold
|
|
|
|
self.initial_update_size = batch_size
|
|
self.min_update_size = self.initial_update_size
|
|
self.key_dimension = key_width
|
|
self.value_dimension = 1
|
|
self._reset_buffer()
|
|
|
|
self.built_capacity = 0
|
|
|
|
def add(self, keys, values, additional_data=None):
|
|
if not additional_data:
|
|
additional_data = [None] * len(keys)
|
|
|
|
# Adds new embeddings and values to the dictionary
|
|
indices = []
|
|
indices_to_remove = []
|
|
for i in range(keys.shape[0]):
|
|
index = self._lookup_key_index(keys[i])
|
|
if index and self.override_existing_keys:
|
|
# update existing value
|
|
self.values[index] += self.new_value_shift_coefficient * (values[i] - self.values[index])
|
|
self.additional_data[index[0][0]] = additional_data[i]
|
|
self.lru_timestamps[index] = self.current_timestamp
|
|
indices_to_remove.append(i)
|
|
else:
|
|
# add new
|
|
if self.curr_size >= self.max_size:
|
|
# find the LRU entry
|
|
index = np.argmin(self.lru_timestamps)
|
|
else:
|
|
index = self.curr_size
|
|
self.curr_size += 1
|
|
self.lru_timestamps[index] = self.current_timestamp
|
|
indices.append(index)
|
|
|
|
for i in reversed(indices_to_remove):
|
|
keys = np.delete(keys, i, 0)
|
|
values = np.delete(values, i, 0)
|
|
del additional_data[i]
|
|
|
|
self.buffered_keys = np.vstack((self.buffered_keys, keys))
|
|
self.buffered_values = np.vstack((self.buffered_values, values))
|
|
self.buffered_indices = self.buffered_indices + indices
|
|
self.buffered_additional_data = self.buffered_additional_data + additional_data
|
|
|
|
if len(self.buffered_indices) >= self.min_update_size:
|
|
self.min_update_size = max(self.initial_update_size, int(self.curr_size * 0.02))
|
|
self._rebuild_index()
|
|
elif self.rebuild_on_every_update:
|
|
self._rebuild_index()
|
|
|
|
self.current_timestamp += 1
|
|
|
|
# Returns the stored embeddings and values of the closest embeddings
|
|
def query(self, keys, k):
|
|
if not self.has_enough_entries(k):
|
|
# this will only happen when the DND is not yet populated with enough entries, which is only during heatup
|
|
# these values won't be used and therefore they are meaningless
|
|
return [0.0], [0.0], [0], [None]
|
|
|
|
_, indices = self._get_k_nearest_neighbors_indices(keys, k)
|
|
|
|
embeddings = []
|
|
values = []
|
|
additional_data = []
|
|
for ind in indices:
|
|
self.lru_timestamps[ind] = self.current_timestamp
|
|
embeddings.append(self.embeddings[ind])
|
|
values.append(self.values[ind])
|
|
curr_additional_data = []
|
|
for sub_ind in ind:
|
|
curr_additional_data.append(self.additional_data[sub_ind])
|
|
additional_data.append(curr_additional_data)
|
|
|
|
self.current_timestamp += 1
|
|
|
|
return embeddings, values, indices, additional_data
|
|
|
|
def has_enough_entries(self, k):
|
|
return self.curr_size > k and (self.built_capacity > k)
|
|
|
|
def sample_embeddings(self, num_embeddings):
|
|
return self.embeddings[np.random.choice(self.curr_size, num_embeddings)]
|
|
|
|
def _get_k_nearest_neighbors_indices(self, keys, k):
|
|
distances = []
|
|
indices = []
|
|
for key in keys:
|
|
index, distance = self.index.get_nns_by_vector(key, k, include_distances=True)
|
|
distances.append(distance)
|
|
indices.append(index)
|
|
return distances, indices
|
|
|
|
def _rebuild_index(self):
|
|
self.index.unbuild()
|
|
self.embeddings[self.buffered_indices] = self.buffered_keys
|
|
self.values[self.buffered_indices] = np.squeeze(self.buffered_values)
|
|
for i, data in zip(self.buffered_indices, self.buffered_additional_data):
|
|
self.additional_data[i] = data
|
|
for idx, key in zip(self.buffered_indices, self.buffered_keys):
|
|
self.index.add_item(idx, key)
|
|
|
|
self._reset_buffer()
|
|
|
|
self.index.build(self.num_neighbors)
|
|
self.built_capacity = self.curr_size
|
|
|
|
def _reset_buffer(self):
|
|
self.buffered_keys = np.zeros((0, self.key_dimension))
|
|
self.buffered_values = np.zeros((0, self.value_dimension))
|
|
self.buffered_indices = []
|
|
self.buffered_additional_data = []
|
|
|
|
def _lookup_key_index(self, key):
|
|
distance, index = self._get_k_nearest_neighbors_indices([key], 1)
|
|
if distance != [[]] and distance[0][0] <= self.key_error_threshold:
|
|
return index
|
|
return None
|
|
|
|
|
|
class QDND(object):
|
|
def __init__(self, dict_size, key_width, num_actions, new_value_shift_coefficient=0.1, key_error_threshold=0.01,
|
|
learning_rate=0.01, num_neighbors=50, return_additional_data=False, override_existing_keys=False,
|
|
rebuild_on_every_update=False):
|
|
self.dict_size = dict_size
|
|
self.key_width = key_width
|
|
self.num_actions = num_actions
|
|
self.new_value_shift_coefficient = new_value_shift_coefficient
|
|
self.key_error_threshold = key_error_threshold
|
|
self.learning_rate = learning_rate
|
|
self.num_neighbors = num_neighbors
|
|
self.return_additional_data = return_additional_data
|
|
self.override_existing_keys = override_existing_keys
|
|
self.dicts = []
|
|
|
|
# create a dict for each action
|
|
for a in range(num_actions):
|
|
new_dict = AnnoyDictionary(dict_size, key_width, new_value_shift_coefficient,
|
|
key_error_threshold=key_error_threshold, num_neighbors=num_neighbors,
|
|
override_existing_keys=override_existing_keys,
|
|
rebuild_on_every_update=rebuild_on_every_update)
|
|
self.dicts.append(new_dict)
|
|
|
|
def add(self, embeddings, actions, values, additional_data=None):
|
|
# add a new set of embeddings and values to each of the underlining dictionaries
|
|
embeddings = np.array(embeddings)
|
|
actions = np.array(actions)
|
|
values = np.array(values)
|
|
for a in range(self.num_actions):
|
|
idx = np.where(actions == a)
|
|
curr_action_embeddings = embeddings[idx]
|
|
curr_action_values = np.expand_dims(values[idx], -1)
|
|
if additional_data:
|
|
curr_additional_data = []
|
|
for i in idx[0]:
|
|
curr_additional_data.append(additional_data[i])
|
|
else:
|
|
curr_additional_data = None
|
|
|
|
self.dicts[a].add(curr_action_embeddings, curr_action_values, curr_additional_data)
|
|
return True
|
|
|
|
def query(self, embeddings, action, k):
|
|
# query for nearest neighbors to the given embeddings
|
|
dnd_embeddings = []
|
|
dnd_values = []
|
|
dnd_indices = []
|
|
dnd_additional_data = []
|
|
for i in range(len(embeddings)):
|
|
embedding, value, indices, additional_data = self.dicts[action].query([embeddings[i]], k)
|
|
dnd_embeddings.append(embedding[0])
|
|
dnd_values.append(value[0])
|
|
dnd_indices.append(indices[0])
|
|
dnd_additional_data.append(additional_data[0])
|
|
|
|
if self.return_additional_data:
|
|
return dnd_embeddings, dnd_values, dnd_indices, dnd_additional_data
|
|
else:
|
|
return dnd_embeddings, dnd_values, dnd_indices
|
|
|
|
def has_enough_entries(self, k):
|
|
# check if each of the action dictionaries has at least k entries
|
|
for a in range(self.num_actions):
|
|
if not self.dicts[a].has_enough_entries(k):
|
|
return False
|
|
return True
|
|
|
|
def update_keys_and_values(self, actions, key_gradients, value_gradients, indices):
|
|
# Update DND keys and values
|
|
for batch_action, batch_keys, batch_values, batch_indices in zip(actions, key_gradients, value_gradients, indices):
|
|
# Update keys (embeddings) and values in DND
|
|
for i, index in enumerate(batch_indices):
|
|
self.dicts[batch_action].embeddings[index, :] -= self.learning_rate * batch_keys[i, :]
|
|
self.dicts[batch_action].values[index] -= self.learning_rate * batch_values[i]
|
|
|
|
def sample_embeddings(self, num_embeddings):
|
|
num_actions = len(self.dicts)
|
|
embeddings = []
|
|
num_embeddings_per_action = int(num_embeddings/num_actions)
|
|
for action in range(num_actions):
|
|
embeddings.append(self.dicts[action].sample_embeddings(num_embeddings_per_action))
|
|
embeddings = np.vstack(embeddings)
|
|
|
|
# the numbers did not divide nicely, let's just randomly sample some more embeddings
|
|
if num_embeddings_per_action * num_actions < num_embeddings:
|
|
action = np.random.randint(0, num_actions)
|
|
extra_embeddings = self.dicts[action].sample_embeddings(num_embeddings -
|
|
num_embeddings_per_action * num_actions)
|
|
embeddings = np.vstack([embeddings, extra_embeddings])
|
|
return embeddings
|
|
|
|
def clean(self):
|
|
# create a new dict for each action
|
|
self.dicts = []
|
|
for a in range(self.num_actions):
|
|
new_dict = AnnoyDictionary(self.dict_size, self.key_width, self.new_value_shift_coefficient,
|
|
key_error_threshold=self.key_error_threshold, num_neighbors=self.num_neighbors)
|
|
self.dicts.append(new_dict)
|
|
|
|
|
|
def load_dnd(model_dir):
|
|
max_id = 0
|
|
|
|
for f in [s for s in os.listdir(model_dir) if s.endswith('.dnd')]:
|
|
if int(f.split('.')[0]) > max_id:
|
|
max_id = int(f.split('.')[0])
|
|
|
|
model_path = str(max_id) + '.dnd'
|
|
with open(os.path.join(model_dir, model_path), 'rb') as f:
|
|
DND = pickle.load(f)
|
|
|
|
for a in range(DND.num_actions):
|
|
DND.dicts[a].index = AnnoyIndex(512, metric='euclidean')
|
|
DND.dicts[a].index.set_seed(1)
|
|
|
|
for idx, key in zip(range(DND.dicts[a].curr_size), DND.dicts[a].embeddings[:DND.dicts[a].curr_size]):
|
|
DND.dicts[a].index.add_item(idx, key)
|
|
|
|
DND.dicts[a].index.build(50)
|
|
|
|
return DND
|