1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00
Files
coach/docs_raw/source/diagrams.xml
shadiendrawis 2b5d1dabe6 ACER algorithm (#184)
* initial ACER commit

* Code cleanup + several fixes

* Q-retrace bug fix + small clean-ups

* added documentation for acer

* ACER benchmarks

* update benchmarks table

* Add nightly running of golden and trace tests. (#202)

Resolves #200

* comment out nightly trace tests until values reset.

* remove redundant observe ignore (#168)

* ensure nightly test env containers exist. (#205)

Also bump integration test timeout

* wxPython removal (#207)

Replacing wxPython with Python's Tkinter.
Also removing the option to choose multiple files as it is unused and causes errors, and fixing the load file/directory spinner.

* Create CONTRIBUTING.md (#210)

* Create CONTRIBUTING.md.  Resolves #188

* run nightly golden tests sequentially. (#217)

Should reduce resource requirements and potential CPU contention but increases
overall execution time.

* tests: added new setup configuration + test args (#211)

- added utils for future tests and conftest
- added test args

* new docs build

* golden test update
2019-02-20 23:52:34 +02:00

1 line
8.1 KiB
XML

<mxfile modified="2019-02-10T18:35:59.935Z" host="www.draw.io" agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.139 Safari/537.36" version="10.2.1" etag="oVRlGCHRoZX2a2BLwc5B" type="device"><diagram id="33c2a640-8c1e-935c-0e0a-86b5dd5c932c" name="Page-1">7V1dd6M40v41uUwOQnxe5qPTPXu6ezPT7767e0lsYrODwYtx0plfvxJGGFQyYFvCkFZ2T48tA8Y8VaWqR1WlK3y/+vk5C9bLb+k8jK9MY/7zCj9cmSZCnkP+Q0fedyOu6e0GFlk0Lw/aD/yI/grLQaMc3UbzcNM4ME/TOI/WzcFZmiThLG+MBVmWvjUPe0nj5reug0UIBn7MghiO/jOa58vdqGcb+/EvYbRYsm9GRvnJczD7c5Gl26T8visTvxR/u49XAbtWefxmGczTt9oQ/nSF77M0zXevVj/vw5g+W/bYduc9Hvi0uu8sTPJeJ2C8O+U1iLchu+fizvJ39jSK3xPSM9AVvntbRnn4Yx3M6KdvBH8ytsxXcfnxIg429Okb5PUsXUWz8vUmz9I/w/s0TrPiqtiZeeHzS/UJe86YjLxEcVw7ch6E3suMjqdJXgqLaZTva8cZxR8ZD+JokZCxOHzJ6dtsVp7lkHfwEZVP7TXM8vBnbah8ZJ/DdBXm2Ts5hH1qeSV+70xu/VLA3/biYjGhWNZEBTvl8w1KEV1UV9/DRF6USIlRczyFoM2DzbI6rxXBTw79Xx8ESx0gX5QF8yjco5akSSgDWFcOsASfBq6m4RgQV0uAq8Nswzm4+obGNZeEpNvUUGqjAZJYhCSyZCCJAJIBmaeGsay++2C4rmT8kNmCnwzAfOvG5iBz/BsP7/9sAGClMXUApeBndmtimMxvqa9B3s0oNBSQOl7V3E6fUBw8h/Fd5R3UHuJd8T8xWj0fP3nq2fu/6DeRR1i+/ffBeddwH2/v2kDLg2wR5k1BDucNjwnCWEPFFoDCxrIwDvLotelniZAqv+EpjcjdVVJS2V4mI5XLyK6xSbfZLCxPq3s+4Eo2L2/Y4K61exDgWgT14L122JoesDnmprHRem+27555ArLbTwC3xJ1AXux+5V5bKqx7KZDbQ4H0VNZzKuOcEtx3KjN5gT7FFCKVzubw4LUa0oZgSQ8bzKbOVeFkDUbHEcUMvowZTaOoBEXk90TR4meqk5TR+eVhlBTqYX4GFGgjxiKjKsO/hLPjdhOSgSTM39Lsz4Lvor8wC+cRjRsMEj1EaUJezCMCQPS83b0dazwxYOCAnSaQotlRWZwA2bN/FDjmS/pv+HNNfnJQIrdO42j2zqDdBKt1TA96ydJVdUYJOIFQI92NtDsg0hZAepaFQU5BC5K6gkbJC8U3ff5PuNPchIK5U+8or+DP02wvKNXJu4ODpAgv5vOIDgfx/qrBc7rNwWlaNoBsWHhA2YCTcqXdAY15CaqFjlcwb5PoJc1W8Tuv/9URmwIw856OxWmyKH4J+SHkE3J/1DqEL8E2bkwNpYwUt7HRUlED9xIGA4ZNe4NB8SZSsYmYPGyiAuKdEJBnnzMTMS9eMDszr45Jwjc6wSSvVL7CzTpNqIEZK+QjoBeNJtnjWwOKAvNIOthg8lNyjkJsPHv21GoPuRxipMOMPKCQjN/RBxPNgvi2/GAVzef0a4RCsBcToy/R0pcNKY4rf6FgcfJchTYFvp6YCJEAoqaEG7PdSBhhbDdFAjkc1r0JYYO7EB+vS2KD+Rvu4naRB2hqTmzPY2pRjwyAX0KuzY8p18jn5IdnEy8k17ahWK5hxJZtizh8GRTBWDFG/bAoKbwvh/jsRFaS5826EpnJz86tyiR7dsb8orvhgukZCTk1GfOz3QvvJfHBt2uNtgSXGvVA21SFtgvQni3TdNNCi5wPabmm91Gda55DMQXhcuUVSQcULlClz5swe4Vh7TR185JxkidA0lMEJLvGRPzJn1FecyfJu3+X9yDZ09y5a1f1CKrufLI83JF4n3zQYbn2ad4n7xU6vIhJ8j75G7ZRu/fJ3xd3/NneZ6WyWgsOaQGagBpwsZPFs4GnqoGL1agBH1RdXA0gacYtV3yIuX3YKMv2ucxFR0CDMoMtfXrXdBGDYVSmitdk79TEWMzVtvhnZ8U2ROtI+wFJnI41L21AehgQTlRMaD5ES2FSzAdkaZqpELuFTbbkGSXVB7NtVvzm/YevQRYFz7Fe9zxi3RMZBgRb2cKnCVmaYD6vICUGIosSOj1QhX4LsuKjtPq8vkauIe7Luu6rUesQi5ZFpUDcIz38w/oD9XCGWbbGkpI7ah8BGafHM9aNU/tzrabPMNDaKTK8jjoXv/2EswMc/EHifEnCP1pBd08WdO5KQy2fdoo2v/xy/AmgOUDnbzclKw+MJck0S51vkA/JZ9U2M+bSbb4u8mLZ6WP1Fi7o+dlDZrxhGLf9imZxZHSmjbhZuykgsmykcza5eQZjgGGAydkUnkDgbEmUTMOUXD7w4C2M5w1pYQQJADWGIFxflexBuI426bxIAGFJH4tdZS4LkzR7dBx7xDMKtgNgR6roZwzDzSZ/1Mirr9FHq3CVll+l1bknjyBofqOMR8A9CpR/BY/BG5XHYPEyYZ6ahjpYIAVC/ouHOUw9aqI9L7T7Uc8/EuYfUeW2K1AJGdOPdbF2eaOpv1fURkFUsCnuoyClmhfGp1yUsPcjNiBEWGfNWn0dKhy9DGXji/X2smCEWBQBfBBjfMk8U2RZXbCqSju1enRGGZH/qC4vxTZH5UEC78oyhCJybpoKsvzW6w7JQVmC2u80oVp1YHoh31l0d7iiHYTzGS3zZ0y3nlP6zyliCRhiTmFKJ2oBEUdFOX/6AmBvtH7QBMXRgFvu5QCH9ONA0I0mEJDUiIvP3EeOgHYSduKS0RbPhrRTHAZZstfO0iBL9w0/eDFZxa5XsApWB5CpiCZ2IOWyXc93aYOls1QL4LTJ7W1y3cv1ZHYmlWpzbolY+cDG4sVbflMOTk8v56/k87IxpKfOdmOYhkxdplixhGfUMSYxSo7jIcuxDezxDoWHpEScfIOY/eYQqlPBPKt9BcN2zj3B6ugXDqN4yf3CHUjKxWlKF/FfUkrKJtvVVb1ZR7HET2OoPFoJmt1Nk7obdB0FyIAjYOBVlYE4ovDJiSlm8+i1gaXz3y3dDemOQnpdonNLw2rqP1efkldlVsfuKps17cq5G4tTgkI5Tm6s/lFtuPheNqrF6Vhx4ptHIE/UGFuROLnQ3dfbrbTCZfou2P7icq69C1178ZKMRrANQcu8HIIqF8Z/8f0+bMHErG7rKhcujWtbeqwm2t7lNBF60iF9XZBfH8KvGZbHFIDbmbugapHbhYvc5TzJOsfrtsKngcyF9lhQEq+sc6HrAswoscJ+YAlG0+DWn1oN2T1D5NYpIi7lwIUc0dEcVpDljBUrb7AYe4zozyy/UMCbkcHyEHq7/wnz/L0EPNjmKRlKs3yZLuiuB19p/F8X2AOUWauknEl+sam4Tn65fYt6erNavVvKwzAHSs542Ep1OS7MRxkJ/2hZnMcGKqD670ro8bONq6hjGrzpDg7Q4fnPo09gFWaHfz3v+TZPOJtl9KbVvOgSdL8rUrdxLUZZNicm1XbcR6sbfyVHUeMCINmsSqG37hx9Au7QTnBLWDKl70FnNVqts1R3dL06xUXlt74wOuk6VVGI90FKtVRaUZHfaI7LivIC5Zxa/+3ynf/BlZS5LF1GEfzGY08wuxrM8LdkSm4w44tcFlUrZVVz/IuulX30zDjBTvdD0g1+j94cE0pdPYad3yevem2W/IjkVYOvYzMwrIa3RLsgWKxHyllYQrKXPLE1LSBYBUmwEFSljc/XGoNS7luhtbY1EM3HUnTyYvs6OzMvfH7po5PzIPReZjKUD0laeCEYcaAhQSdkLMo6QDxDcxJqsM4nDl/DWKn2yZ0dx6F7oPOEYMVTne71CGfU6J5nPmOn13w4t0Nvbp2ue3JQ4vIqkSCj3xMk9LPWHudtoSnK/lblBxPVpU7+R3KDx6HofG8OxLiEAZLEyBSvFb0PSgiiNKSiQ5dWK/rUFB3UDQ2r6Bfzpqel6BhseetClNQp+pA54FrR1Sg6RkDRvQEVvUfzeR02d4fNpqjkWlnYTNxAAJuOm2XEzaaoxlpV3FxxLXqa7YKJs5FYQG8om2aRDpw/gKbzIRnGA/rTyNSKflLgPKyiD7lSrBV9oMB5WEXXDFkvlEDgjM0BA2ekGbLpKzoInDEeMHBGF2PIfMfFQS9FDxFRdffCM7rN5+MjS7DEjFgesXxdH5IkC5PXKEuTldZ4FRqPXAxlCU4biE0l8pVes2Wn4Gbzk71pQdTEbJmMDoUIabZMiv7ZfKqe6Qi0TxlbZmq2rCdMvGMkMJLKfGtTs2UfQNP5XE5sDuhbM73Wit6OEl9rMbCia7Zs+oru8HsBDavomi3rhRJfH0YUHaKkTtE1WzZ9RXcdoOjugIp+scB5WmyZYwCGAwszElSxZSYMlTVbNk2NdxBgXrEgh1QdW4ZhvA5oF+M1Ct80nv1sA+cEWIL+sMh3VaEJ43pQKKnR7M9lYwS47GHxhL63JkVlkKJI4JurI0WxyDnXIVQ3KYqcAUMoLFot1iHUxDSdp9uQO2AIhS+2X9q0FB2QosMquijQ1Yo+LUUHpOiwiq6r6XuhBEhR5ECUlCm6JVqM1oo+LUUHpChi/cGHUHRLtFI+iKJXT7R/G6m+zQL36UOOkrCZ37TaNWDQjIXRFr/X2GmYmQCzT3UWcxD4ht/AVjGqQA9d1parQYUIbLmcckoLLmXfLkR46tZfB1KxAdXsCpJ8XcGqhRxLCkmQKFlvaZdJAkUuoLIm60BV8iPFmvocar4oNVu0xbCMfVaQBUPadJtr3Lr1zQfk8cDI9VjPHbSBcSsGh9oUQ/t99D4KlekZSU9iArnXEAy4x2rfpsQI7Oli9OztfkKTXmTBqDd93oTZK3kaacKCnOdMGFlR4K83hSTQwAq565+7yIiLrbLwLcjmki52tHNAhOux+Gvx0wZ2E5DbojZNhTORJONlYl5CBS68aHM2Ka6CLYrbx2u5DrZeP7O9ejX3jsVuWbYly251X0qi3bJhEB/MTjRZ2sRIMjFVZ+jLmBgbWhS5u5F17r0w4c3IesjL6VbPNkUuXF9TKH07sup+GoEr0UryvOildxyEEacL8rSHCYXOKzRsBU9RCNv0JvbLAnVCkPVfaVBHcpQdK1D2lp0Hta739nAEO8hUg5fQ9R7FDiPyPPciZ4Kg+bCkng2aLQCNWcmx+KrYN8D+I6fuVyi6mMFbJpn+ag/mhkjZmr6MVgF94JWD+JUK3FO6iQr/Fj88p3merlolsfI6eSczpxbiLtiswxlF5yX6Sc3jXfGVt2zUYCPk9TLP15vCWX4k/19E+XL7fEMsKXnzndIESfDjfZOHqw0ZmKXBbEn+mwVv9IEEm4JKfIxWC/JvEC/SjJy+2tysk4Wcacjj+gjuN5FurEUL6Dg5fJztK56FPpTHibhZqG3l61yDxirkGwbNQ7JnoeLUY3cDA+0vTddxWq2Vxy0Y8CdcnbtZF2KhupbkaUiyMVFJ9nH7CRIkGWlJnpIk93UyRyfJnnKbLAhUtCSPV5Klx7gDSTIyWJK7OlFWTddoUZYqyn1X1+XTNY6lJWVKkmJN1ehVuwCoM3oqFqS0KCsTZWeyomwpn78dLcpTEmXpS6uDibLrqRZlV4vylETZn6oomx0ORo8zPLPrDFYYc+AMCeriaXWZkrp4k1UXSzmfBnOd/794aRp/X+fRKvqrTHrm5H2MxQ+tkiV/FyeDRxPBgk0kyuyTUifm6sWpkdog1xLYIGckU7bFT6dOJxHKWy1Htg1y9erUlETZvVyOqqtXf6YkKf5IVuSPN3o2y2JSZ/T06s+URNmd7PxtO8ee4bKdA9UJP8w/Fjc50GEGtnj4zEHDDL1eM1Yz5Ypm3JFkcwIz1Ul1YN5MSac6XL1eMylRlp5vMZQoWyygVSfKsFvJUxpHs3dN2x09nw5M2+mlg7EaITUePjQPju3d+DbRGmP3L5+n4Nk3nk18cHP3r9v8ggP1V0ebNeDkuyXPd9CsOXxMzJ1xvlljGfw1s/bw+/eBjNiZ1cZDGjHf4JeFPGjDRFWHUkwYqxiqofT7H9caKFEtHu/UehgC5SoDygRA3aVpTh5bsF4TWGpdQXY9PgoM+UGNKlA/bHejigwRrJYMWGGHyAetfcIlWmTx9czDWkpIc337dq+BgkCBuiHiBMGqZXVAwaad3z9poARAWU636VMHE9y65Pv1jzxcw1nr9+uvYZAlUbLQM1oPXJFhduPqi3C1ZeAqoDNuv2rg+gBnQ8sJgLMEzR5wS+DaHzjYweP77aMGrgdwVX+3NuDUWVKY9ncf5CHtRjKj/b50ZHCiOvocmzOoHfUF/MnjkwauB3A236ZRRAsrU0cfUioVn/+53C5Bw9jHqvp8qQyLwRq9yEVbFkvB0QSYaHZ/FOy+L2rm5o+kuhEsGHbWuGCWCamsxsXXNeeTEuWR1LgcL8q2yVMK0kUZsju3s5w8fdO4z6Kc9rPVU2vn1GphzuSIpla2vC1/ZoXUz8PD02eNXA/kMF8K72FvSHbVh/TOfRytiyUo4+np7xrEPuoHGToRiGzalg8ipHo0dD1jS4OfEwfVP5OtRGpXbmSunGkIXDnTuFh9lckEVUvKJCSFZaZe3OlHTdYFG2WBx+H4lXP6+TPOdvpNNl1qUZ6EKBtjoWKOFmUTIdWirEsFJyXKY6FijhZlu+MMCaKsWcVJifJoql6PFWWHy9FUIMqQVfxM4tnltyAJFhPZLnhoHopHEQsW51SV3lQuRj0dOqDKahp/fNVwwVwGx+ayZzEyIGDCbAYpeEHa8IsGSqRXbNm5DSa2cZV8mCAx+G0b59F1oCv6xUyuy2elCwFjSZHyAYO5Xz/C+OV6HQfvGi7I3nJbjw9rBBFM6fqUbMLVM/mBGiuQ/sNqY1oVS5QNKwUrmMX15fZeL5H0mcJM6GuwlnlDLJGwTVlr0D1udUmVyNfgNWxQmGDpG213kCbXLJFDAwbSNjjATFMwfanyNViRed05/Prji8YJKpbtdOPEdr+SjxMkM77d7hJsNFI9/HeBEVSnU5DH+Mf9HR2IgitaVQJr4ZjLuNHOSDfAvmXyVcOeD/EVuZEyNtA1kcTNGH5FJvzwwsC5mbesoUJzEX7olcuWVs12M1QlYSn3NX23Avf5zXU9Vvgrfx9wE0EG6WEbxkXtrrFrbeAEK2p5kufNukCLt2JvERET03j69Ie2cD2mMAN0sBAYOF+ZgfPlGbg+i4CW3zB+18aNQZ/OB7aA9Kc+hVlEsAmzgwJ7pPHDIuM3krVug+/q5pVdig7bSmbMD5zRXCAUtcW3b5BvWK5T/tu8mmvbN7VPzZPNcNuXeFbbl0i00JWJ4bPvDU1w9Qzv+D28fJbV08WbcKieZHFNUcugAr9y4vyiJ85+MBoOHxuIgHREFLMUICW2Y9axgczYgBUoNaZHduSlp0dYLup3TI+WgVvP6JoeMd8s0nNPDEUQ9swbEpQj5DqWa4DrWu7N/kOPeSkqJkGJrVu17qnXvZFsPX+87mHMy/iRukcVhtc+74brPdhb/yzEmQIfYXZ9BWqGoa95Fy6D1yjNaGca4z5OdVuvnu6KgzhJErU/VNYOo2pqoy3mYDm9DRPI0iuVt7SGzaR5urC3tXGc9u7Y/ki7Y7sO33lGdnds1qC8Zhh/W0W5bvR/wPZZPTo6qcs2ZrpXL3r/Tfc07IOcy/crEM1abJNn+cDBtOM/gih5JnOBBq8bPMR34PINJOpToKgHHrFR8nwOXWEks28R6znZdFGkF7ufvnrq+jfO/o+3QbZzg8CnR7s3yHYFl6mtsrZ8ibwg6+6vh+/p42//ffm/5dPd12jzKf3X365NFnZqd122ghS//+FndbP03Xv5Tij/Am0anLiw+I2fO1t5WRZPXLS18urzjehk0gLcCpsYhtImC2bu397/MssswGPoJdFVzYUN2swPl2V8AE7dGmV4s0kezd5q0jfvV3UTep5B7dFWsU2zL2CP+eX/ztaKXvsZnfYYnH+yPbbxIY0+2x6Tt1ma5vXDizrsdB7SI/4H</diagram></mxfile>