1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/docs/contributing/add_agent.html

309 lines
14 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Adding a New Agent &mdash; Reinforcement Learning Coach 0.12.1 documentation</title>
<script type="text/javascript" src="../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/custom.css" type="text/css" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Adding a New Environment" href="add_env.html" />
<link rel="prev" title="Distributed Coach - Horizontal Scale-Out" href="../design/horizontal_scaling.html" />
<link href="../_static/css/custom.css" rel="stylesheet" type="text/css">
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../index.html" class="icon icon-home"> Reinforcement Learning Coach
<img src="../_static/dark_logo.png" class="logo" alt="Logo"/>
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Intro</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dist_usage.html">Usage - Distributed Coach</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/index.html">Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dashboard.html">Coach Dashboard</a></li>
</ul>
<p class="caption"><span class="caption-text">Design</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../design/control_flow.html">Control Flow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../design/network.html">Network Design</a></li>
<li class="toctree-l1"><a class="reference internal" href="../design/horizontal_scaling.html">Distributed Coach - Horizontal Scale-Out</a></li>
</ul>
<p class="caption"><span class="caption-text">Contributing</span></p>
<ul class="current">
<li class="toctree-l1 current"><a class="current reference internal" href="#">Adding a New Agent</a></li>
<li class="toctree-l1"><a class="reference internal" href="add_env.html">Adding a New Environment</a></li>
</ul>
<p class="caption"><span class="caption-text">Components</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../components/agents/index.html">Agents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../components/architectures/index.html">Architectures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../components/data_stores/index.html">Data Stores</a></li>
<li class="toctree-l1"><a class="reference internal" href="../components/environments/index.html">Environments</a></li>
<li class="toctree-l1"><a class="reference internal" href="../components/exploration_policies/index.html">Exploration Policies</a></li>
<li class="toctree-l1"><a class="reference internal" href="../components/filters/index.html">Filters</a></li>
<li class="toctree-l1"><a class="reference internal" href="../components/memories/index.html">Memories</a></li>
<li class="toctree-l1"><a class="reference internal" href="../components/memory_backends/index.html">Memory Backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../components/orchestrators/index.html">Orchestrators</a></li>
<li class="toctree-l1"><a class="reference internal" href="../components/core_types.html">Core Types</a></li>
<li class="toctree-l1"><a class="reference internal" href="../components/spaces.html">Spaces</a></li>
<li class="toctree-l1"><a class="reference internal" href="../components/additional_parameters.html">Additional Parameters</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../index.html">Reinforcement Learning Coach</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../index.html">Docs</a> &raquo;</li>
<li>Adding a New Agent</li>
<li class="wy-breadcrumbs-aside">
<a href="../_sources/contributing/add_agent.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="adding-a-new-agent">
<h1>Adding a New Agent<a class="headerlink" href="#adding-a-new-agent" title="Permalink to this headline"></a></h1>
<p>Coachs modularity makes adding an agent a simple and clean task.
We suggest using the following
<a class="reference external" href="https://github.com/NervanaSystems/coach/blob/master/tutorials/1.%20Implementing%20an%20Algorithm.ipynb">Jupyter notebook tutorial</a>
to ramp up on this process. In general, it involves the following steps:</p>
<ol class="arabic">
<li><p>Implement your algorithm in a new file. The agent can inherit base classes such as <strong>ValueOptimizationAgent</strong> or
<strong>ActorCriticAgent</strong>, or the more generic <strong>Agent</strong> base class.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p><strong>ValueOptimizationAgent</strong>, <strong>PolicyOptimizationAgent</strong> and <strong>Agent</strong> are abstract classes.
<code class="code docutils literal notranslate"><span class="pre">learn_from_batch()</span></code> should be overriden with the desired behavior for the algorithm being implemented.
If deciding to inherit from <strong>Agent</strong>, also <code class="code docutils literal notranslate"><span class="pre">choose_action()</span></code> should be overriden.</p>
</div>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">learn_from_batch</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="n">List</span><span class="p">,</span> <span class="n">List</span><span class="p">]:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Given a batch of transitions, calculates their target values and updates the network.</span>
<span class="sd"> :param batch: A list of transitions</span>
<span class="sd"> :return: The total loss of the training, the loss per head and the unclipped gradients</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">choose_action</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">curr_state</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> choose an action to act with in the current episode being played. Different behavior might be exhibited when training</span>
<span class="sd"> or testing.</span>
<span class="sd"> :param curr_state: the current state to act upon.</span>
<span class="sd"> :return: chosen action, some action value describing the action (q-value, probability, etc)</span>
<span class="sd"> &quot;&quot;&quot;</span>
</pre></div>
</div>
</li>
<li><p>Implement your agents specific network head, if needed, at the implementation for the framework of your choice.
For example <strong>architectures/neon_components/heads.py</strong>. The head will inherit the generic base class Head.
A new output type should be added to configurations.py, and a mapping between the new head and output type should
be defined in the get_output_head() function at <strong>architectures/neon_components/general_network.py</strong></p></li>
<li><p>Define a new parameters class that inherits AgentParameters.
The parameters class defines all the hyperparameters for the agent, and is initialized with 4 main components:</p>
<ul class="simple">
<li><p><strong>algorithm</strong>: A class inheriting AlgorithmParameters which defines any algorithm specific parameters</p></li>
<li><p><strong>exploration</strong>: A class inheriting ExplorationParameters which defines the exploration policy parameters.
There are several common exploration policies built-in which you can use, and are defined under
the exploration sub directory. You can also define your own custom exploration policy.</p></li>
<li><p><strong>memory</strong>: A class inheriting MemoryParameters which defined the memory parameters.
There are several common memory types built-in which you can use, and are defined under the memories
sub directory. You can also define your own custom memory.</p></li>
<li><p><strong>networks</strong>: A dictionary defining all the networks that will be used by the agent. The keys of the dictionary
define the network name and will be used to access each network through the agent class.
The dictionary values are a class inheriting NetworkParameters, which define the network structure
and parameters.</p></li>
</ul>
<p>Additionally, set the path property to return the path to your agent class in the following format:</p>
<p><code class="code docutils literal notranslate"><span class="pre">&lt;path</span> <span class="pre">to</span> <span class="pre">python</span> <span class="pre">module&gt;:&lt;name</span> <span class="pre">of</span> <span class="pre">agent</span> <span class="pre">class&gt;</span></code></p>
<p>For example,</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">RainbowAgentParameters</span><span class="p">(</span><span class="n">AgentParameters</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">algorithm</span><span class="o">=</span><span class="n">RainbowAlgorithmParameters</span><span class="p">(),</span>
<span class="n">exploration</span><span class="o">=</span><span class="n">RainbowExplorationParameters</span><span class="p">(),</span>
<span class="n">memory</span><span class="o">=</span><span class="n">RainbowMemoryParameters</span><span class="p">(),</span>
<span class="n">networks</span><span class="o">=</span><span class="p">{</span><span class="s2">&quot;main&quot;</span><span class="p">:</span> <span class="n">RainbowNetworkParameters</span><span class="p">()})</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">path</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s1">&#39;rainbow.rainbow_agent:RainbowAgent&#39;</span>
</pre></div>
</div>
</li>
<li><p>(Optional) Define a preset using the new agent type with a given environment, and the hyper-parameters that should
be used for training on that environment.</p></li>
</ol>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="add_env.html" class="btn btn-neutral float-right" title="Adding a New Environment" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="../design/horizontal_scaling.html" class="btn btn-neutral float-left" title="Distributed Coach - Horizontal Scale-Out" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2018-2019, Intel AI Lab
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>