mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
104 lines
3.8 KiB
Python
104 lines
3.8 KiB
Python
"""
|
|
"""
|
|
import argparse
|
|
import time
|
|
import json
|
|
|
|
from threading import Thread
|
|
|
|
from rl_coach.base_parameters import TaskParameters
|
|
from rl_coach.coach import expand_preset
|
|
from rl_coach import core_types
|
|
from rl_coach.utils import short_dynamic_import
|
|
from rl_coach.memories.backend.memory_impl import construct_memory_params
|
|
from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params
|
|
|
|
def data_store_ckpt_save(data_store):
|
|
while True:
|
|
data_store.save_to_store()
|
|
time.sleep(10)
|
|
|
|
def training_worker(graph_manager, checkpoint_dir, policy_type):
|
|
"""
|
|
restore a checkpoint then perform rollouts using the restored model
|
|
"""
|
|
# initialize graph
|
|
task_parameters = TaskParameters()
|
|
task_parameters.__dict__['checkpoint_save_dir'] = checkpoint_dir
|
|
task_parameters.__dict__['checkpoint_save_secs'] = 20
|
|
graph_manager.create_graph(task_parameters)
|
|
|
|
# save randomly initialized graph
|
|
graph_manager.save_checkpoint()
|
|
|
|
# training loop
|
|
steps = 0
|
|
|
|
# evaluation offset
|
|
eval_offset = 1
|
|
|
|
while(steps < graph_manager.improve_steps.num_steps):
|
|
if graph_manager.should_train():
|
|
steps += 1
|
|
|
|
graph_manager.phase = core_types.RunPhase.TRAIN
|
|
graph_manager.train()
|
|
graph_manager.phase = core_types.RunPhase.UNDEFINED
|
|
|
|
if steps * graph_manager.agent_params.algorithm.num_consecutive_playing_steps.num_steps > graph_manager.steps_between_evaluation_periods.num_steps * eval_offset:
|
|
graph_manager.evaluate(graph_manager.evaluation_steps)
|
|
eval_offset += 1
|
|
|
|
if policy_type == 'ON':
|
|
graph_manager.save_checkpoint()
|
|
else:
|
|
graph_manager.occasionally_save_checkpoint()
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-p', '--preset',
|
|
help="(string) Name of a preset to run (class name from the 'presets' directory.)",
|
|
type=str,
|
|
required=True)
|
|
parser.add_argument('--checkpoint-dir',
|
|
help='(string) Path to a folder containing a checkpoint to write the model to.',
|
|
type=str,
|
|
default='/checkpoint')
|
|
parser.add_argument('--memory-backend-params',
|
|
help="(string) JSON string of the memory backend params",
|
|
type=str)
|
|
parser.add_argument('--data-store-params',
|
|
help="(string) JSON string of the data store params",
|
|
type=str)
|
|
parser.add_argument('--policy-type',
|
|
help="(string) The type of policy: OFF/ON",
|
|
type=str,
|
|
default='OFF')
|
|
args = parser.parse_args()
|
|
|
|
graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True)
|
|
|
|
if args.memory_backend_params:
|
|
args.memory_backend_params = json.loads(args.memory_backend_params)
|
|
args.memory_backend_params['run_type'] = 'trainer'
|
|
graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(args.memory_backend_params))
|
|
|
|
if args.data_store_params:
|
|
data_store_params = construct_data_store_params(json.loads(args.data_store_params))
|
|
data_store_params.checkpoint_dir = args.checkpoint_dir
|
|
graph_manager.data_store_params = data_store_params
|
|
# data_store = get_data_store(data_store_params)
|
|
# thread = Thread(target = data_store_ckpt_save, args = [data_store])
|
|
# thread.start()
|
|
|
|
training_worker(
|
|
graph_manager=graph_manager,
|
|
checkpoint_dir=args.checkpoint_dir,
|
|
policy_type=args.policy_type
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|