mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
* bug-fix in architecture.py where additional fetches would acquire more entries than it should * change in run_test to allow ignoring some test(s)
609 lines
17 KiB
Python
609 lines
17 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from utils import Enum
|
|
import json
|
|
import types
|
|
|
|
|
|
class Frameworks(Enum):
|
|
TensorFlow = 1
|
|
Neon = 2
|
|
|
|
|
|
class InputTypes(object):
|
|
Observation = 1
|
|
Measurements = 2
|
|
GoalVector = 3
|
|
Action = 4
|
|
TimedObservation = 5
|
|
|
|
|
|
class EmbedderComplexity(object):
|
|
Shallow = 1
|
|
Deep = 2
|
|
|
|
|
|
class OutputTypes(object):
|
|
Q = 1
|
|
DuelingQ = 2
|
|
V = 3
|
|
Pi = 4
|
|
MeasurementsPrediction = 5
|
|
DNDQ = 6
|
|
NAF = 7
|
|
PPO = 8
|
|
PPO_V = 9
|
|
CategoricalQ = 10
|
|
QuantileRegressionQ = 11
|
|
|
|
|
|
class MiddlewareTypes(object):
|
|
LSTM = 1
|
|
FC = 2
|
|
|
|
|
|
class Parameters(object):
|
|
def __str__(self):
|
|
parameters = {}
|
|
for k, v in self.__dict__.items():
|
|
if isinstance(v, type) and issubclass(v, Parameters):
|
|
# v.__dict__ doesn't return a dictionary but a mappingproxy
|
|
# which json doesn't serialize, so convert it into a normal
|
|
# dictionary
|
|
parameters[k] = dict(v.__dict__.items())
|
|
elif isinstance(v, types.MappingProxyType):
|
|
parameters[k] = dict(v.items())
|
|
else:
|
|
parameters[k] = v
|
|
|
|
return json.dumps(parameters, indent=4, default=repr)
|
|
|
|
|
|
class AgentParameters(Parameters):
|
|
agent = ''
|
|
|
|
# Architecture parameters
|
|
input_types = [InputTypes.Observation]
|
|
output_types = [OutputTypes.Q]
|
|
middleware_type = MiddlewareTypes.FC
|
|
loss_weights = [1.0]
|
|
stop_gradients_from_head = [False]
|
|
embedder_complexity = EmbedderComplexity.Shallow
|
|
num_output_head_copies = 1
|
|
use_measurements = False
|
|
use_accumulated_reward_as_measurement = False
|
|
add_a_normalized_timestep_to_the_observation = False
|
|
l2_regularization = 0
|
|
hidden_layers_activation_function = 'relu'
|
|
optimizer_type = 'Adam'
|
|
async_training = False
|
|
use_separate_networks_per_head = False
|
|
|
|
# Agent parameters
|
|
num_consecutive_playing_steps = 1
|
|
num_consecutive_training_steps = 1
|
|
update_evaluation_agent_network_after_every_num_steps = 3000
|
|
bootstrap_total_return_from_old_policy = False
|
|
n_step = -1
|
|
num_episodes_in_experience_replay = 200
|
|
num_transitions_in_experience_replay = None
|
|
discount = 0.99
|
|
policy_gradient_rescaler = 'A_VALUE'
|
|
apply_gradients_every_x_episodes = 5
|
|
beta_entropy = 0
|
|
num_steps_between_gradient_updates = 20000 # t_max
|
|
num_steps_between_copying_online_weights_to_target = 1000
|
|
rate_for_copying_weights_to_target = 1.0
|
|
monte_carlo_mixing_rate = 0.1
|
|
gae_lambda = 0.96
|
|
step_until_collecting_full_episodes = False
|
|
targets_horizon = 'N-Step'
|
|
replace_mse_with_huber_loss = False
|
|
load_memory_from_file_path = None
|
|
collect_new_data = True
|
|
|
|
# PPO related params
|
|
target_kl_divergence = 0.01
|
|
initial_kl_coefficient = 1.0
|
|
high_kl_penalty_coefficient = 1000
|
|
value_targets_mix_fraction = 0.1
|
|
clip_likelihood_ratio_using_epsilon = None
|
|
use_kl_regularization = True
|
|
estimate_value_using_gae = False
|
|
|
|
# DFP related params
|
|
num_predicted_steps_ahead = 6
|
|
goal_vector = [1.0, 1.0]
|
|
future_measurements_weights = [0.5, 0.5, 1.0]
|
|
|
|
# NEC related params
|
|
dnd_size = 500000
|
|
l2_norm_added_delta = 0.001
|
|
new_value_shift_coefficient = 0.1
|
|
number_of_knn = 50
|
|
DND_key_error_threshold = 0.01
|
|
|
|
# Framework support
|
|
neon_support = False
|
|
tensorflow_support = True
|
|
|
|
# distributed agents params
|
|
shared_optimizer = True
|
|
share_statistics_between_workers = True
|
|
|
|
|
|
class EnvironmentParameters(Parameters):
|
|
type = 'Doom'
|
|
level = 'basic'
|
|
observation_stack_size = 4
|
|
frame_skip = 4
|
|
desired_observation_width = 76
|
|
desired_observation_height = 60
|
|
normalize_observation = False
|
|
reward_scaling = 1.0
|
|
reward_clipping_min = None
|
|
reward_clipping_max = None
|
|
human_control = False
|
|
|
|
|
|
class ExplorationParameters(Parameters):
|
|
# Exploration policies
|
|
policy = 'EGreedy'
|
|
evaluation_policy = 'Greedy'
|
|
# -- bootstrap dqn parameters
|
|
bootstrapped_data_sharing_probability = 0.5
|
|
architecture_num_q_heads = 1
|
|
# -- dropout approximation of thompson sampling parameters
|
|
dropout_discard_probability = 0
|
|
initial_keep_probability = 0.0 # unused
|
|
final_keep_probability = 0.99 # unused
|
|
keep_probability_decay_steps = 50000 # unused
|
|
# -- epsilon greedy parameters
|
|
initial_epsilon = 0.5
|
|
final_epsilon = 0.01
|
|
epsilon_decay_steps = 50000
|
|
evaluation_epsilon = 0.05
|
|
# -- epsilon greedy at end of episode parameters
|
|
average_episode_length_over_num_episodes = 20
|
|
# -- boltzmann softmax parameters
|
|
initial_temperature = 100.0
|
|
final_temperature = 1.0
|
|
temperature_decay_steps = 50000
|
|
# -- additive noise
|
|
initial_noise_variance_percentage = 0.1
|
|
final_noise_variance_percentage = 0.1
|
|
noise_variance_decay_steps = 1
|
|
# -- Ornstein-Uhlenbeck process
|
|
mu = 0
|
|
theta = 0.15
|
|
sigma = 0.3
|
|
dt = 0.01
|
|
|
|
|
|
class GeneralParameters(Parameters):
|
|
train = True
|
|
framework = Frameworks.TensorFlow
|
|
threads = 1
|
|
sess = None
|
|
|
|
# distributed training options
|
|
num_threads = 1
|
|
synchronize_over_num_threads = 1
|
|
distributed = False
|
|
|
|
# Agent blocks
|
|
memory = 'EpisodicExperienceReplay'
|
|
architecture = 'GeneralTensorFlowNetwork'
|
|
|
|
# General parameters
|
|
clip_gradients = None
|
|
kl_divergence_constraint = 100000
|
|
num_training_iterations = 10000000000
|
|
num_heatup_steps = 1000
|
|
heatup_using_network_decisions = False
|
|
batch_size = 32
|
|
save_model_sec = None
|
|
save_model_dir = None
|
|
checkpoint_restore_dir = None
|
|
learning_rate = 0.00025
|
|
learning_rate_decay_rate = 0
|
|
learning_rate_decay_steps = 0
|
|
evaluation_episodes = 5
|
|
evaluate_every_x_episodes = 1000000
|
|
evaluate_every_x_training_iterations = 0
|
|
rescaling_interpolation_type = 'bilinear'
|
|
current_episode = 0
|
|
|
|
# setting a seed will only work for non-parallel algorithms. Parallel algorithms add uncontrollable noise in
|
|
# the form of different workers starting at different times, and getting different assignments of CPU
|
|
# time from the OS.
|
|
seed = None
|
|
|
|
checkpoints_path = ''
|
|
|
|
# Testing parameters
|
|
test = False
|
|
test_min_return_threshold = 0
|
|
test_max_step_threshold = 1
|
|
test_num_workers = 1
|
|
|
|
|
|
class VisualizationParameters(Parameters):
|
|
# Visualization parameters
|
|
record_video_every = 1000
|
|
video_path = '/home/llt_lab/temp/breakout-videos'
|
|
plot_action_values_online = False
|
|
show_saliency_maps_every_num_episodes = 1000000000
|
|
print_summary = False
|
|
dump_csv = True
|
|
dump_signals_to_csv_every_x_episodes = 10
|
|
render = False
|
|
dump_gifs = True
|
|
max_fps_for_human_control = 10
|
|
tensorboard = False
|
|
|
|
|
|
class Roboschool(EnvironmentParameters):
|
|
type = 'Gym'
|
|
frame_skip = 1
|
|
observation_stack_size = 1
|
|
desired_observation_height = None
|
|
desired_observation_width = None
|
|
|
|
|
|
class GymVectorObservation(EnvironmentParameters):
|
|
type = 'Gym'
|
|
frame_skip = 1
|
|
observation_stack_size = 1
|
|
desired_observation_height = None
|
|
desired_observation_width = None
|
|
|
|
|
|
class Bullet(EnvironmentParameters):
|
|
type = 'Bullet'
|
|
frame_skip = 1
|
|
observation_stack_size = 1
|
|
desired_observation_height = None
|
|
desired_observation_width = None
|
|
|
|
|
|
class Atari(EnvironmentParameters):
|
|
type = 'Gym'
|
|
frame_skip = 4
|
|
observation_stack_size = 4
|
|
desired_observation_height = 84
|
|
desired_observation_width = 84
|
|
reward_clipping_max = 1.0
|
|
reward_clipping_min = -1.0
|
|
|
|
|
|
class Doom(EnvironmentParameters):
|
|
type = 'Doom'
|
|
frame_skip = 4
|
|
observation_stack_size = 3
|
|
desired_observation_height = 60
|
|
desired_observation_width = 76
|
|
|
|
|
|
class Carla(EnvironmentParameters):
|
|
type = 'Carla'
|
|
frame_skip = 1
|
|
observation_stack_size = 4
|
|
desired_observation_height = 128
|
|
desired_observation_width = 180
|
|
normalize_observation = False
|
|
server_height = 256
|
|
server_width = 360
|
|
config = 'environments/CarlaSettings.ini'
|
|
level = 'town1'
|
|
verbose = True
|
|
stereo = False
|
|
semantic_segmentation = False
|
|
depth = False
|
|
episode_max_time = 100000 # miliseconds for each episode
|
|
continuous_to_bool_threshold = 0.5
|
|
allow_braking = False
|
|
|
|
|
|
class Human(AgentParameters):
|
|
type = 'HumanAgent'
|
|
num_episodes_in_experience_replay = 10000000
|
|
|
|
|
|
class NStepQ(AgentParameters):
|
|
type = 'NStepQAgent'
|
|
input_types = [InputTypes.Observation]
|
|
output_types = [OutputTypes.Q]
|
|
loss_weights = [1.0]
|
|
optimizer_type = 'Adam'
|
|
num_steps_between_copying_online_weights_to_target = 1000
|
|
num_episodes_in_experience_replay = 2
|
|
apply_gradients_every_x_episodes = 1
|
|
num_steps_between_gradient_updates = 20 # this is called t_max in all the papers
|
|
hidden_layers_activation_function = 'elu'
|
|
targets_horizon = 'N-Step'
|
|
async_training = True
|
|
shared_optimizer = True
|
|
|
|
|
|
class DQN(AgentParameters):
|
|
type = 'DQNAgent'
|
|
input_types = [InputTypes.Observation]
|
|
output_types = [OutputTypes.Q]
|
|
loss_weights = [1.0]
|
|
optimizer_type = 'Adam'
|
|
num_steps_between_copying_online_weights_to_target = 1000
|
|
neon_support = True
|
|
async_training = True
|
|
shared_optimizer = True
|
|
|
|
|
|
class DDQN(DQN):
|
|
type = 'DDQNAgent'
|
|
|
|
|
|
class DuelingDQN(DQN):
|
|
type = 'DQNAgent'
|
|
output_types = [OutputTypes.DuelingQ]
|
|
|
|
|
|
class BootstrappedDQN(DQN):
|
|
type = 'BootstrappedDQNAgent'
|
|
num_output_head_copies = 10
|
|
|
|
|
|
class CategoricalDQN(DQN):
|
|
type = 'CategoricalDQNAgent'
|
|
output_types = [OutputTypes.CategoricalQ]
|
|
v_min = -10.0
|
|
v_max = 10.0
|
|
atoms = 51
|
|
neon_support = False
|
|
|
|
|
|
class QuantileRegressionDQN(DQN):
|
|
type = 'QuantileRegressionDQNAgent'
|
|
output_types = [OutputTypes.QuantileRegressionQ]
|
|
atoms = 51
|
|
|
|
|
|
class NEC(AgentParameters):
|
|
type = 'NECAgent'
|
|
optimizer_type = 'RMSProp'
|
|
input_types = [InputTypes.Observation]
|
|
output_types = [OutputTypes.DNDQ]
|
|
loss_weights = [1.0]
|
|
dnd_size = 500000
|
|
l2_norm_added_delta = 0.001
|
|
new_value_shift_coefficient = 0.1
|
|
number_of_knn = 50
|
|
n_step = 100
|
|
bootstrap_total_return_from_old_policy = True
|
|
DND_key_error_threshold = 0.1
|
|
|
|
|
|
class ActorCritic(AgentParameters):
|
|
type = 'ActorCriticAgent'
|
|
input_types = [InputTypes.Observation]
|
|
output_types = [OutputTypes.V, OutputTypes.Pi]
|
|
loss_weights = [0.5, 1.0]
|
|
stop_gradients_from_head = [False, False]
|
|
num_episodes_in_experience_replay = 2
|
|
policy_gradient_rescaler = 'A_VALUE'
|
|
hidden_layers_activation_function = 'elu'
|
|
apply_gradients_every_x_episodes = 5
|
|
beta_entropy = 0
|
|
num_steps_between_gradient_updates = 5000 # this is called t_max in all the papers
|
|
gae_lambda = 0.96
|
|
shared_optimizer = True
|
|
estimate_value_using_gae = False
|
|
async_training = True
|
|
|
|
|
|
class PolicyGradient(AgentParameters):
|
|
type = 'PolicyGradientsAgent'
|
|
input_types = [InputTypes.Observation]
|
|
output_types = [OutputTypes.Pi]
|
|
loss_weights = [1.0]
|
|
num_episodes_in_experience_replay = 2
|
|
policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP'
|
|
apply_gradients_every_x_episodes = 5
|
|
beta_entropy = 0
|
|
num_steps_between_gradient_updates = 20000 # this is called t_max in all the papers
|
|
async_training = True
|
|
|
|
|
|
class DDPG(AgentParameters):
|
|
type = 'DDPGAgent'
|
|
input_types = [InputTypes.Observation, InputTypes.Action]
|
|
output_types = [OutputTypes.V] # V is used because we only want a single Q value
|
|
loss_weights = [1.0]
|
|
hidden_layers_activation_function = 'relu'
|
|
num_episodes_in_experience_replay = 10000
|
|
num_steps_between_copying_online_weights_to_target = 1
|
|
rate_for_copying_weights_to_target = 0.001
|
|
shared_optimizer = True
|
|
async_training = True
|
|
|
|
|
|
class DDDPG(AgentParameters):
|
|
type = 'DDPGAgent'
|
|
input_types = [InputTypes.Observation, InputTypes.Action]
|
|
output_types = [OutputTypes.V] # V is used because we only want a single Q value
|
|
loss_weights = [1.0]
|
|
hidden_layers_activation_function = 'relu'
|
|
num_episodes_in_experience_replay = 10000
|
|
num_steps_between_copying_online_weights_to_target = 10
|
|
rate_for_copying_weights_to_target = 1
|
|
shared_optimizer = True
|
|
async_training = True
|
|
|
|
|
|
class NAF(AgentParameters):
|
|
type = 'NAFAgent'
|
|
input_types = [InputTypes.Observation]
|
|
output_types = [OutputTypes.NAF]
|
|
loss_weights = [1.0]
|
|
hidden_layers_activation_function = 'tanh'
|
|
num_consecutive_training_steps = 5
|
|
num_steps_between_copying_online_weights_to_target = 1
|
|
rate_for_copying_weights_to_target = 0.001
|
|
optimizer_type = 'RMSProp'
|
|
async_training = True
|
|
|
|
|
|
class PPO(AgentParameters):
|
|
type = 'PPOAgent'
|
|
input_types = [InputTypes.Observation]
|
|
output_types = [OutputTypes.V]
|
|
loss_weights = [1.0]
|
|
hidden_layers_activation_function = 'tanh'
|
|
num_episodes_in_experience_replay = 1000000
|
|
policy_gradient_rescaler = 'A_VALUE'
|
|
gae_lambda = 0.96
|
|
target_kl_divergence = 0.01
|
|
initial_kl_coefficient = 1.0
|
|
high_kl_penalty_coefficient = 1000
|
|
add_a_normalized_timestep_to_the_observation = True
|
|
l2_regularization = 0#1e-3
|
|
value_targets_mix_fraction = 0.1
|
|
async_training = True
|
|
estimate_value_using_gae = True
|
|
step_until_collecting_full_episodes = True
|
|
|
|
|
|
class ClippedPPO(AgentParameters):
|
|
type = 'ClippedPPOAgent'
|
|
input_types = [InputTypes.Observation]
|
|
output_types = [OutputTypes.V, OutputTypes.PPO]
|
|
loss_weights = [0.5, 1.0]
|
|
stop_gradients_from_head = [False, False]
|
|
hidden_layers_activation_function = 'tanh'
|
|
num_episodes_in_experience_replay = 1000000
|
|
policy_gradient_rescaler = 'GAE'
|
|
gae_lambda = 0.95
|
|
target_kl_divergence = 0.01
|
|
initial_kl_coefficient = 1.0
|
|
high_kl_penalty_coefficient = 1000
|
|
add_a_normalized_timestep_to_the_observation = False
|
|
l2_regularization = 1e-3
|
|
value_targets_mix_fraction = 0.1
|
|
clip_likelihood_ratio_using_epsilon = 0.2
|
|
async_training = False
|
|
use_kl_regularization = False
|
|
estimate_value_using_gae = True
|
|
batch_size = 64
|
|
use_separate_networks_per_head = True
|
|
step_until_collecting_full_episodes = True
|
|
beta_entropy = 0.01
|
|
|
|
|
|
class DFP(AgentParameters):
|
|
type = 'DFPAgent'
|
|
input_types = [InputTypes.Observation, InputTypes.Measurements, InputTypes.GoalVector]
|
|
output_types = [OutputTypes.MeasurementsPrediction]
|
|
loss_weights = [1.0]
|
|
use_measurements = True
|
|
num_predicted_steps_ahead = 6
|
|
goal_vector = [1.0, 1.0]
|
|
future_measurements_weights = [0.5, 0.5, 1.0]
|
|
async_training = True
|
|
|
|
|
|
class MMC(AgentParameters):
|
|
type = 'MixedMonteCarloAgent'
|
|
input_types = [InputTypes.Observation]
|
|
output_types = [OutputTypes.Q]
|
|
loss_weights = [1.0]
|
|
num_steps_between_copying_online_weights_to_target = 1000
|
|
monte_carlo_mixing_rate = 0.1
|
|
neon_support = True
|
|
|
|
|
|
class PAL(AgentParameters):
|
|
type = 'PALAgent'
|
|
input_types = [InputTypes.Observation]
|
|
output_types = [OutputTypes.Q]
|
|
loss_weights = [1.0]
|
|
pal_alpha = 0.9
|
|
persistent_advantage_learning = False
|
|
num_steps_between_copying_online_weights_to_target = 1000
|
|
neon_support = True
|
|
|
|
|
|
class BC(AgentParameters):
|
|
type = 'BCAgent'
|
|
input_types = [InputTypes.Observation]
|
|
output_types = [OutputTypes.Q]
|
|
loss_weights = [1.0]
|
|
collect_new_data = False
|
|
evaluate_every_x_training_iterations = 50000
|
|
|
|
|
|
class EGreedyExploration(ExplorationParameters):
|
|
policy = 'EGreedy'
|
|
initial_epsilon = 0.5
|
|
final_epsilon = 0.01
|
|
epsilon_decay_steps = 50000
|
|
evaluation_epsilon = 0.05
|
|
initial_noise_variance_percentage = 0.1
|
|
final_noise_variance_percentage = 0.1
|
|
noise_variance_decay_steps = 50000
|
|
|
|
|
|
class BootstrappedDQNExploration(ExplorationParameters):
|
|
policy = 'Bootstrapped'
|
|
architecture_num_q_heads = 10
|
|
bootstrapped_data_sharing_probability = 0.1
|
|
|
|
|
|
class OUExploration(ExplorationParameters):
|
|
policy = 'OUProcess'
|
|
mu = 0
|
|
theta = 0.15
|
|
sigma = 0.3
|
|
dt = 0.01
|
|
|
|
|
|
class AdditiveNoiseExploration(ExplorationParameters):
|
|
policy = 'AdditiveNoise'
|
|
initial_noise_variance_percentage = 0.1
|
|
final_noise_variance_percentage = 0.1
|
|
noise_variance_decay_steps = 50000
|
|
|
|
|
|
class EntropyExploration(ExplorationParameters):
|
|
policy = 'ContinuousEntropy'
|
|
|
|
|
|
class CategoricalExploration(ExplorationParameters):
|
|
policy = 'Categorical'
|
|
|
|
|
|
class Preset(GeneralParameters):
|
|
def __init__(self, agent, env, exploration, visualization=VisualizationParameters):
|
|
"""
|
|
:type agent: AgentParameters
|
|
:type env: EnvironmentParameters
|
|
:type exploration: ExplorationParameters
|
|
:type visualization: VisualizationParameters
|
|
"""
|
|
self.visualization = visualization
|
|
self.agent = agent
|
|
self.env = env
|
|
self.exploration = exploration
|