mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
75 lines
3.2 KiB
Python
75 lines
3.2 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
|
|
from rl_coach.agents.dqn_agent import DQNAgentParameters, DQNAlgorithmParameters
|
|
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
|
|
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
|
|
|
|
|
|
class MixedMonteCarloAlgorithmParameters(DQNAlgorithmParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.monte_carlo_mixing_rate = 0.1
|
|
|
|
|
|
class MixedMonteCarloAgentParameters(DQNAgentParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.algorithm = MixedMonteCarloAlgorithmParameters()
|
|
self.memory = EpisodicExperienceReplayParameters()
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.mmc_agent:MixedMonteCarloAgent'
|
|
|
|
|
|
class MixedMonteCarloAgent(ValueOptimizationAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
self.mixing_rate = agent_parameters.algorithm.monte_carlo_mixing_rate
|
|
|
|
def learn_from_batch(self, batch):
|
|
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
|
|
|
# for the 1-step, we use the double-dqn target. hence actions are taken greedily according to the online network
|
|
selected_actions = np.argmax(self.networks['main'].online_network.predict(batch.next_states(network_keys)), 1)
|
|
|
|
# TD_targets are initialized with the current prediction so that we will
|
|
# only update the action that we have actually done in this transition
|
|
q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([
|
|
(self.networks['main'].target_network, batch.next_states(network_keys)),
|
|
(self.networks['main'].online_network, batch.states(network_keys))
|
|
])
|
|
|
|
total_returns = batch.n_step_discounted_rewards()
|
|
|
|
for i in range(self.ap.network_wrappers['main'].batch_size):
|
|
one_step_target = batch.rewards()[i] + \
|
|
(1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * \
|
|
q_st_plus_1[i][selected_actions[i]]
|
|
monte_carlo_target = total_returns()[i]
|
|
TD_targets[i, batch.actions()[i]] = (1 - self.mixing_rate) * one_step_target + \
|
|
self.mixing_rate * monte_carlo_target
|
|
|
|
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets)
|
|
total_loss, losses, unclipped_grads = result[:3]
|
|
|
|
return total_loss, losses, unclipped_grads
|