1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/presets/CARLA_CIL.py
2018-10-02 13:43:36 +03:00

163 lines
7.6 KiB
Python

import os
import numpy as np
import tensorflow as tf
# make sure you have $CARLA_ROOT/PythonClient in your PYTHONPATH
from carla.driving_benchmark.experiment_suites import CoRL2017
from rl_coach.logger import screen
from rl_coach.agents.cil_agent import CILAgentParameters
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedderParameters
from rl_coach.architectures.tensorflow_components.heads.cil_head import RegressionHeadParameters
from rl_coach.architectures.tensorflow_components.layers import Conv2d, Dense, BatchnormActivationDropout
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
from rl_coach.base_parameters import VisualizationParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
from rl_coach.environments.carla_environment import CarlaEnvironmentParameters
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
from rl_coach.filters.filter import InputFilter
from rl_coach.filters.observation.observation_crop_filter import ObservationCropFilter
from rl_coach.filters.observation.observation_reduction_by_sub_parts_name_filter import \
ObservationReductionBySubPartsNameFilter
from rl_coach.filters.observation.observation_rescale_to_size_filter import ObservationRescaleToSizeFilter
from rl_coach.filters.observation.observation_to_uint8_filter import ObservationToUInt8Filter
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.schedules import ConstantSchedule
from rl_coach.spaces import ImageObservationSpace
from rl_coach.utilities.carla_dataset_to_replay_buffer import create_dataset
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = TrainingSteps(500)
schedule_params.evaluation_steps = EnvironmentEpisodes(5)
schedule_params.heatup_steps = EnvironmentSteps(0)
################
# Agent Params #
################
agent_params = CILAgentParameters()
# forward camera and measurements input
agent_params.network_wrappers['main'].input_embedders_parameters = {
'CameraRGB': InputEmbedderParameters(
scheme=[
Conv2d(32, 5, 2),
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
Conv2d(32, 3, 1),
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
Conv2d(64, 3, 2),
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
Conv2d(64, 3, 1),
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
Conv2d(128, 3, 2),
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
Conv2d(128, 3, 1),
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
Conv2d(256, 3, 1),
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
Conv2d(256, 3, 1),
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
Dense(512),
BatchnormActivationDropout(activation_function=tf.tanh, dropout_rate=0.3),
Dense(512),
BatchnormActivationDropout(activation_function=tf.tanh, dropout_rate=0.3)
],
activation_function='none' # we define the activation function for each layer explicitly
),
'measurements': InputEmbedderParameters(
scheme=[
Dense(128),
BatchnormActivationDropout(activation_function=tf.tanh, dropout_rate=0.5),
Dense(128),
BatchnormActivationDropout(activation_function=tf.tanh, dropout_rate=0.5)
],
activation_function='none' # we define the activation function for each layer explicitly
)
}
# simple fc middleware
agent_params.network_wrappers['main'].middleware_parameters = \
FCMiddlewareParameters(
scheme=[
Dense(512),
BatchnormActivationDropout(activation_function=tf.tanh, dropout_rate=0.5)
],
activation_function='none'
)
# output branches
agent_params.network_wrappers['main'].heads_parameters = [
RegressionHeadParameters(
scheme=[
Dense(256),
BatchnormActivationDropout(activation_function=tf.tanh, dropout_rate=0.5),
Dense(256),
BatchnormActivationDropout(activation_function=tf.tanh)
],
num_output_head_copies=4 # follow lane, left, right, straight
)
]
# TODO: there should be another head predicting the speed which is connected directly to the forward camera embedding
agent_params.network_wrappers['main'].batch_size = 120
agent_params.network_wrappers['main'].learning_rate = 0.0002
# crop and rescale the image + use only the forward speed measurement
agent_params.input_filter = InputFilter()
agent_params.input_filter.add_observation_filter('CameraRGB', 'cropping',
ObservationCropFilter(crop_low=np.array([115, 0, 0]),
crop_high=np.array([510, -1, -1])))
agent_params.input_filter.add_observation_filter('CameraRGB', 'rescale',
ObservationRescaleToSizeFilter(
ImageObservationSpace(np.array([88, 200, 3]), high=255)))
agent_params.input_filter.add_observation_filter('CameraRGB', 'to_uint8', ObservationToUInt8Filter(0, 255))
agent_params.input_filter.add_observation_filter(
'measurements', 'select_speed',
ObservationReductionBySubPartsNameFilter(
["forward_speed"], reduction_method=ObservationReductionBySubPartsNameFilter.ReductionMethod.Keep))
# no exploration is used
agent_params.exploration = AdditiveNoiseParameters()
agent_params.exploration.noise_percentage_schedule = ConstantSchedule(0)
agent_params.exploration.evaluation_noise_percentage = 0
# no playing during the training phase
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(0)
# use the following command line to download and extract the CARLA dataset:
# python rl_coach/utilities/carla_dataset_to_replay_buffer.py
agent_params.memory.load_memory_from_file_path = "./datasets/carla_train_set_replay_buffer.p"
agent_params.memory.state_key_with_the_class_index = 'high_level_command'
agent_params.memory.num_classes = 4
# download dataset if it doesn't exist
if not os.path.exists(agent_params.memory.load_memory_from_file_path):
screen.log_title("The CARLA dataset is not present in the following path: {}"
.format(agent_params.memory.load_memory_from_file_path))
result = screen.ask_yes_no("Do you want to download it now?")
if result:
create_dataset(None, "./datasets/carla_train_set_replay_buffer.p")
else:
screen.error("Please update the path to the CARLA dataset in the CARLA_CIL preset", crash=True)
###############
# Environment #
###############
env_params = CarlaEnvironmentParameters()
env_params.cameras = ['CameraRGB']
env_params.camera_height = 600
env_params.camera_width = 800
env_params.separate_actions_for_throttle_and_brake = True
env_params.allow_braking = True
env_params.quality = CarlaEnvironmentParameters.Quality.EPIC
env_params.experiment_suite = CoRL2017('Town01')
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=VisualizationParameters())