1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/presets/Doom_Health_MMC.py
2018-10-02 13:43:36 +03:00

52 lines
2.2 KiB
Python

from rl_coach.agents.mmc_agent import MixedMonteCarloAgentParameters
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
from rl_coach.environments.doom_environment import DoomEnvironmentParameters
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.memories.memory import MemoryGranularity
from rl_coach.schedules import LinearSchedule
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(5)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(1000)
#########
# Agent #
#########
agent_params = MixedMonteCarloAgentParameters()
agent_params.network_wrappers['main'].learning_rate = 0.00025
agent_params.exploration.epsilon_schedule = LinearSchedule(0.5, 0, 10000)
agent_params.exploration.evaluation_epsilon = 0
agent_params.memory.max_size = (MemoryGranularity.Episodes, 200)
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(1000)
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1)
agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False
###############
# Environment #
###############
env_params = DoomEnvironmentParameters(level='HEALTH_GATHERING')
########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.test_using_a_trace_test = False
# disabling this test for now, as it takes too long to converge
# preset_validation_params.test = True
# preset_validation_params.min_reward_threshold = 1000
# preset_validation_params.max_episodes_to_achieve_reward = 300
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=VisualizationParameters(),
preset_validation_params=preset_validation_params)