1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/presets/ExplorationChain_UCB_Q_ensembles.py
2018-10-02 13:43:36 +03:00

51 lines
2.4 KiB
Python

from rl_coach.agents.bootstrapped_dqn_agent import BootstrappedDQNAgentParameters
from rl_coach.base_parameters import VisualizationParameters
from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps
from rl_coach.environments.gym_environment import GymVectorEnvironment
from rl_coach.exploration_policies.ucb import UCBParameters
from rl_coach.filters.filter import NoInputFilter, NoOutputFilter
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.memories.memory import MemoryGranularity
from rl_coach.schedules import ConstantSchedule
N = 20
num_output_head_copies = 20
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = EnvironmentEpisodes(2000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(N)
####################
# DQN Agent Params #
####################
agent_params = BootstrappedDQNAgentParameters()
agent_params.network_wrappers['main'].learning_rate = 0.00025
agent_params.memory.max_size = (MemoryGranularity.Transitions, 1000000)
agent_params.algorithm.discount = 0.99
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(4)
agent_params.network_wrappers['main'].heads_parameters[0].num_output_head_copies = num_output_head_copies
agent_params.network_wrappers['main'].heads_parameters[0].rescale_gradient_from_head_by_factor = 1.0/num_output_head_copies
agent_params.exploration = UCBParameters()
agent_params.exploration.bootstrapped_data_sharing_probability = 1.0
agent_params.exploration.architecture_num_q_heads = num_output_head_copies
agent_params.exploration.epsilon_schedule = ConstantSchedule(0)
agent_params.exploration.lamb = 10
agent_params.input_filter = NoInputFilter()
agent_params.output_filter = NoOutputFilter()
###############
# Environment #
###############
env_params = GymVectorEnvironment(level='rl_coach.environments.toy_problems.exploration_chain:ExplorationChain')
env_params.additional_simulator_parameters = {'chain_length': N, 'max_steps': N+7}
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=VisualizationParameters())