1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/presets/InvertedPendulum_PG.py
2018-10-02 13:43:36 +03:00

42 lines
1.8 KiB
Python

from rl_coach.agents.policy_gradients_agent import PolicyGradientsAgentParameters
from rl_coach.base_parameters import VisualizationParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
from rl_coach.environments.gym_environment import GymVectorEnvironment
from rl_coach.filters.filter import InputFilter
from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter
from rl_coach.filters.reward.reward_rescale_filter import RewardRescaleFilter
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(50)
schedule_params.evaluation_steps = EnvironmentEpisodes(3)
schedule_params.heatup_steps = EnvironmentSteps(0)
#########
# Agent #
#########
agent_params = PolicyGradientsAgentParameters()
agent_params.algorithm.apply_gradients_every_x_episodes = 5
agent_params.algorithm.num_steps_between_gradient_updates = 20000
agent_params.network_wrappers['main'].learning_rate = 0.0005
agent_params.input_filter = InputFilter()
agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(1/20.))
agent_params.input_filter.add_observation_filter('observation', 'normalize', ObservationNormalizationFilter())
###############
# Environment #
###############
env_params = GymVectorEnvironment(level="InvertedPendulum-v2")
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=VisualizationParameters())