1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/presets/MontezumaRevenge_BC.py
2018-10-02 13:43:36 +03:00

45 lines
1.8 KiB
Python

from rl_coach.agents.bc_agent import BCAgentParameters
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
from rl_coach.environments.gym_environment import Atari
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.memories.memory import MemoryGranularity
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = TrainingSteps(500)
schedule_params.evaluation_steps = EnvironmentEpisodes(5)
schedule_params.heatup_steps = EnvironmentSteps(0)
#########
# Agent #
#########
agent_params = BCAgentParameters()
agent_params.network_wrappers['main'].learning_rate = 0.00025
agent_params.memory.max_size = (MemoryGranularity.Transitions, 1000000)
# agent_params.memory.discount = 0.99
agent_params.algorithm.discount = 0.99
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(0)
agent_params.memory.load_memory_from_file_path = 'datasets/montezuma_revenge.p'
###############
# Environment #
###############
env_params = Atari(level='MontezumaRevenge-v0')
env_params.random_initialization_steps = 30
########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.test_using_a_trace_test = False
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=VisualizationParameters(),
preset_validation_params=preset_validation_params)