mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
* bug-fix in architecture.py where additional fetches would acquire more entries than it should * change in run_test to allow ignoring some test(s)
210 lines
8.6 KiB
Python
210 lines
8.6 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
# -*- coding: utf-8 -*-
|
|
import presets
|
|
import numpy as np
|
|
import pandas as pd
|
|
from os import path
|
|
import os
|
|
import glob
|
|
import shutil
|
|
import sys
|
|
import time
|
|
from logger import screen
|
|
from utils import list_all_classes_in_module, threaded_cmd_line_run, killed_processes
|
|
import subprocess
|
|
import signal
|
|
import argparse
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-p', '--preset',
|
|
help="(string) Name of a preset to run (as configured in presets.py)",
|
|
default=None,
|
|
type=str)
|
|
parser.add_argument('-ip', '--ignore_presets',
|
|
help="(string) Name of a preset(s) to ignore (comma separated, and as configured in presets.py)",
|
|
default=None,
|
|
type=str)
|
|
parser.add_argument('-itf', '--ignore_tensorflow',
|
|
help="(flag) Don't test TensorFlow presets.",
|
|
action='store_true')
|
|
parser.add_argument('-in', '--ignore_neon',
|
|
help="(flag) Don't test neon presets.",
|
|
action='store_true')
|
|
parser.add_argument('-v', '--verbose',
|
|
help="(flag) display verbose logs in the event of an error",
|
|
action='store_true')
|
|
parser.add_argument('--stop_after_first_failure',
|
|
help="(flag) stop executing tests after the first error",
|
|
action='store_true')
|
|
|
|
args = parser.parse_args()
|
|
if args.preset is not None:
|
|
presets_lists = [args.preset]
|
|
else:
|
|
presets_lists = list_all_classes_in_module(presets)
|
|
win_size = 10
|
|
fail_count = 0
|
|
test_count = 0
|
|
read_csv_tries = 70
|
|
|
|
# create a clean experiment directory
|
|
test_name = '__test'
|
|
test_path = os.path.join('./experiments', test_name)
|
|
if path.exists(test_path):
|
|
shutil.rmtree(test_path)
|
|
if args.ignore_presets is not None:
|
|
presets_to_ignore = args.ignore_presets.split(',')
|
|
else:
|
|
presets_to_ignore = []
|
|
for idx, preset_name in enumerate(presets_lists):
|
|
preset = eval('presets.{}()'.format(preset_name))
|
|
if preset.test and preset_name not in presets_to_ignore:
|
|
frameworks = []
|
|
if preset.agent.tensorflow_support and not args.ignore_tensorflow:
|
|
frameworks.append('tensorflow')
|
|
if preset.agent.neon_support and not args.ignore_neon:
|
|
frameworks.append('neon')
|
|
|
|
for framework in frameworks:
|
|
if args.stop_after_first_failure and fail_count > 0:
|
|
break
|
|
|
|
test_count += 1
|
|
|
|
# run the experiment in a separate thread
|
|
screen.log_title("Running test {} - {}".format(preset_name, framework))
|
|
log_file_name = 'test_log_{preset_name}_{framework}.txt'.format(
|
|
preset_name=preset_name,
|
|
framework=framework,
|
|
)
|
|
cmd = (
|
|
'CUDA_VISIBLE_DEVICES='' python3 coach.py '
|
|
'-p {preset_name} '
|
|
'-f {framework} '
|
|
'-e {test_name} '
|
|
'-n {num_workers} '
|
|
'-cp "seed=0" '
|
|
'&> {log_file_name} '
|
|
).format(
|
|
preset_name=preset_name,
|
|
framework=framework,
|
|
test_name=test_name,
|
|
num_workers=preset.test_num_workers,
|
|
log_file_name=log_file_name,
|
|
)
|
|
p = subprocess.Popen(cmd, shell=True, executable="/bin/bash", preexec_fn=os.setsid)
|
|
|
|
# get the csv with the results
|
|
csv_path = None
|
|
csv_paths = []
|
|
|
|
if preset.test_num_workers > 1:
|
|
# we have an evaluator
|
|
reward_str = 'Evaluation Reward'
|
|
filename_pattern = 'evaluator*.csv'
|
|
else:
|
|
reward_str = 'Training Reward'
|
|
filename_pattern = 'worker*.csv'
|
|
|
|
initialization_error = False
|
|
test_passed = False
|
|
|
|
tries_counter = 0
|
|
while not csv_paths:
|
|
csv_paths = glob.glob(path.join(test_path, '*', filename_pattern))
|
|
if tries_counter > read_csv_tries:
|
|
break
|
|
tries_counter += 1
|
|
time.sleep(1)
|
|
|
|
if csv_paths:
|
|
csv_path = csv_paths[0]
|
|
|
|
# verify results
|
|
csv = None
|
|
time.sleep(1)
|
|
averaged_rewards = [0]
|
|
|
|
last_num_episodes = 0
|
|
while csv is None or csv['Episode #'].values[-1] < preset.test_max_step_threshold:
|
|
try:
|
|
csv = pd.read_csv(csv_path)
|
|
except:
|
|
# sometimes the csv is being written at the same time we are
|
|
# trying to read it. no problem -> try again
|
|
continue
|
|
|
|
if reward_str not in csv.keys():
|
|
continue
|
|
|
|
rewards = csv[reward_str].values
|
|
rewards = rewards[~np.isnan(rewards)]
|
|
|
|
if len(rewards) >= win_size:
|
|
averaged_rewards = np.convolve(rewards, np.ones(win_size) / win_size, mode='valid')
|
|
else:
|
|
time.sleep(1)
|
|
continue
|
|
|
|
# print progress
|
|
percentage = int((100*last_num_episodes)/preset.test_max_step_threshold)
|
|
sys.stdout.write("\rReward: ({}/{})".format(round(averaged_rewards[-1], 1), preset.test_min_return_threshold))
|
|
sys.stdout.write(' Episode: ({}/{})'.format(last_num_episodes, preset.test_max_step_threshold))
|
|
sys.stdout.write(' {}%|{}{}| '.format(percentage, '#'*int(percentage/10), ' '*(10-int(percentage/10))))
|
|
sys.stdout.flush()
|
|
|
|
if csv['Episode #'].shape[0] - last_num_episodes <= 0:
|
|
continue
|
|
|
|
last_num_episodes = csv['Episode #'].values[-1]
|
|
|
|
# check if reward is enough
|
|
if np.any(averaged_rewards > preset.test_min_return_threshold):
|
|
test_passed = True
|
|
break
|
|
time.sleep(1)
|
|
|
|
# kill test and print result
|
|
os.killpg(os.getpgid(p.pid), signal.SIGTERM)
|
|
if test_passed:
|
|
screen.success("Passed successfully")
|
|
else:
|
|
if csv_paths:
|
|
screen.error("Failed due to insufficient reward", crash=False)
|
|
screen.error("preset.test_max_step_threshold: {}".format(preset.test_max_step_threshold), crash=False)
|
|
screen.error("preset.test_min_return_threshold: {}".format(preset.test_min_return_threshold), crash=False)
|
|
screen.error("averaged_rewards: {}".format(averaged_rewards), crash=False)
|
|
screen.error("episode number: {}".format(csv['Episode #'].values[-1]), crash=False)
|
|
else:
|
|
screen.error("csv file never found", crash=False)
|
|
if args.verbose:
|
|
screen.error("command exitcode: {}".format(p.returncode), crash=False)
|
|
screen.error(open(log_file_name).read(), crash=False)
|
|
|
|
fail_count += 1
|
|
shutil.rmtree(test_path)
|
|
|
|
|
|
screen.separator()
|
|
if fail_count == 0:
|
|
screen.success(" Summary: " + str(test_count) + "/" + str(test_count) + " tests passed successfully")
|
|
else:
|
|
screen.error(" Summary: " + str(test_count - fail_count) + "/" + str(test_count) + " tests passed successfully")
|