1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/utils.py
Roman Dobosz 1b095aeeca Cleanup imports.
Till now, most of the modules were importing all of the module objects
(variables, classes, functions, other imports) into module namespace,
which potentially could (and was) cause of unintentional use of class or
methods, which was indirect imported.

With this patch, all the star imports were substituted with top-level
module, which provides desired class or function.

Besides, all imports where sorted (where possible) in a way pep8[1]
suggests - first are imports from standard library, than goes third
party imports (like numpy, tensorflow etc) and finally coach modules.
All of those sections are separated by one empty line.

[1] https://www.python.org/dev/peps/pep-0008/#imports
2018-04-13 09:58:40 +02:00

385 lines
10 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import inspect
import json
import os
import signal
import subprocess
import threading
import numpy as np
killed_processes = []
eps = np.finfo(np.float32).eps
class Enum(object):
def __init__(self):
pass
def keys(self):
return [attr.lower() for attr in dir(self) if not callable(getattr(self, attr)) and not attr.startswith("__")]
def vals(self):
vars = dict(inspect.getmembers(self, lambda a: not (inspect.isroutine(a))))
return {key.lower(): vars[key] for key in vars}
def get(self, string):
if string.lower() in self.keys():
return self.vals()[string.lower()]
raise NameError('enum does not exist')
def verify(self, string):
if string.lower() in self.keys():
return string.lower(), self.vals()[string.lower()]
raise NameError('enum does not exist')
def to_string(self, enum):
for key, val in self.vals().items():
if val == enum:
return key
raise NameError('enum does not exist')
class RunPhase(Enum):
HEATUP = "Heatup"
TRAIN = "Training"
TEST = "Testing"
def list_all_classes_in_module(module):
return [k for k, v in inspect.getmembers(module, inspect.isclass) if v.__module__ == module.__name__]
def parse_bool(value):
return {'true': True, 'false': False}.get(value.strip().lower(), value)
def convert_to_ascii(data):
import collections
if isinstance(data, basestring):
return parse_bool(str(data))
elif isinstance(data, collections.Mapping):
return dict(map(convert_to_ascii, data.iteritems()))
elif isinstance(data, collections.Iterable):
return type(data)(map(convert_to_ascii, data))
else:
return data
def break_file_path(path):
base = os.path.splitext(os.path.basename(path))[0]
extension = os.path.splitext(os.path.basename(path))[1]
dir = os.path.dirname(path)
return dir, base, extension
def is_empty(str):
return str == 0 or len(str.replace("'", "").replace("\"", "")) == 0
def read_json(filename):
# read json file
with open(filename, 'r') as f:
dict = json.loads(f.read())
return dict
def write_json(filename, dict):
# read json file
with open(filename, 'w') as f:
f.write(json.dumps(dict, indent=4))
def path_is_valid_dir(path):
return os.path.isdir(path)
def remove_suffix(name, suffix_start):
for s in suffix_start:
split = name.find(s)
if split != -1:
name = name[:split]
return name
def parse_int(value):
import ast
try:
int_value = int(value)
return int_value if int_value == value else value
except:
pass
try:
return ast.literal_eval(value)
except:
return value
def set_gpu(gpu_id):
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
os.environ['NVIDIA_VISIBLE_DEVICES'] = str(gpu_id)
def set_cpu():
set_gpu("")
# dictionary to class
class DictToClass(object):
def __init__(self, data):
for name, value in data.iteritems():
setattr(self, name, self._wrap(value))
def _wrap(self, value):
if isinstance(value, (tuple, list, set, frozenset)):
return type(value)([self._wrap(v) for v in value])
else:
return DictToClass(value) if isinstance(value, dict) else value
# class to dictionary
def ClassToDict(x):
# return dict((key, getattr(x, key)) for key in dir(x) if key not in dir(x.__class__))
dictionary = x.__dict__
return {key: dictionary[key] for key in dictionary.keys() if not key.startswith('__')}
def cmd_line_run(result, run_cmd, id=-1):
p = subprocess.Popen(run_cmd, shell=True, executable="/bin/bash")
while result[0] is None or result[0] == [None]:
if id in killed_processes:
p.kill()
result[0] = p.poll()
def threaded_cmd_line_run(run_cmd, id=-1):
runThread = []
result = [[None]]
try:
params = (result, run_cmd, id)
runThread = threading.Thread(name='runThread', target=cmd_line_run, args=params)
runThread.daemon = True
runThread.start()
except:
runThread.join()
return result
class Signal(object):
"""
Stores a stream of values and provides methods like get_mean and get_max
which returns the statistics about accumulated values.
"""
def __init__(self, name):
self.name = name
self.sample_count = 0
self.values = []
def reset(self):
self.sample_count = 0
self.values = []
def add_sample(self, sample):
"""
:param sample: either a single value or an array of values
"""
self.values.append(sample)
def _get_values(self):
if type(self.values[0]) == np.ndarray:
return np.concatenate(self.values)
else:
return self.values
def get_mean(self):
if len(self.values) == 0:
return ''
return np.mean(self._get_values())
def get_max(self):
if len(self.values) == 0:
return ''
return np.max(self._get_values())
def get_min(self):
if len(self.values) == 0:
return ''
return np.min(self._get_values())
def get_stdev(self):
if len(self.values) == 0:
return ''
return np.std(self._get_values())
def force_list(var):
if isinstance(var, list):
return var
else:
return [var]
def squeeze_list(var):
if len(var) == 1:
return var[0]
else:
return var
# http://www.johndcook.com/blog/standard_deviation/
class RunningStat(object):
def __init__(self, shape):
self._shape = shape
self._num_samples = 0
self._mean = np.zeros(shape)
self._std = np.zeros(shape)
def reset(self):
self._num_samples = 0
self._mean = np.zeros(self._shape)
self._std = np.zeros(self._shape)
def push(self, sample):
sample = np.asarray(sample)
assert sample.shape == self._mean.shape, 'RunningStat input shape mismatch'
self._num_samples += 1
if self._num_samples == 1:
self._mean[...] = sample
else:
old_mean = self._mean.copy()
self._mean[...] = old_mean + (sample - old_mean) / self._num_samples
self._std[...] = self._std + (sample - old_mean) * (sample - self._mean)
@property
def n(self):
return self._num_samples
@property
def mean(self):
return self._mean
@property
def var(self):
return self._std / (self._num_samples - 1) if self._num_samples > 1 else np.square(self._mean)
@property
def std(self):
return np.sqrt(self.var)
@property
def shape(self):
return self._mean.shape
def get_open_port():
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(("", 0))
s.listen(1)
port = s.getsockname()[1]
s.close()
return port
class timeout:
def __init__(self, seconds=1, error_message='Timeout'):
self.seconds = seconds
self.error_message = error_message
def _handle_timeout(self, signum, frame):
raise TimeoutError(self.error_message)
def __enter__(self):
signal.signal(signal.SIGALRM, self._handle_timeout)
signal.alarm(self.seconds)
def __exit__(self, type, value, traceback):
signal.alarm(0)
def switch_axes_order(observation, from_type='channels_first', to_type='channels_last'):
"""
transpose an observation axes from channels_first to channels_last or vice versa
:param observation: a numpy array
:param from_type: can be 'channels_first' or 'channels_last'
:param to_type: can be 'channels_first' or 'channels_last'
:return: a new observation with the requested axes order
"""
if from_type == to_type or len(observation.shape) == 1:
return observation
assert 2 <= len(observation.shape) <= 3, 'num axes of an observation must be 2 for a vector or 3 for an image'
assert type(observation) == np.ndarray, 'observation must be a numpy array'
if len(observation.shape) == 3:
if from_type == 'channels_first' and to_type == 'channels_last':
return np.transpose(observation, (1, 2, 0))
elif from_type == 'channels_last' and to_type == 'channels_first':
return np.transpose(observation, (2, 0, 1))
else:
return np.transpose(observation, (1, 0))
class LazyStack(object):
"""
A lazy version of np.stack which avoids copying the memory until it is
needed.
"""
def __init__(self, history, axis=None):
self.history = copy.copy(history)
self.axis = axis
def __array__(self, dtype=None):
array = np.stack(self.history, axis=self.axis)
if dtype is not None:
array = array.astype(dtype)
return array
def stack_observation(curr_stack, observation, stack_size):
"""
Adds a new observation to an existing stack of observations from previous time-steps.
:param curr_stack: The current observations stack.
:param observation: The new observation
:param stack_size: The required stack size
:return: The updated observation stack
"""
if curr_stack == []:
# starting an episode
curr_stack = np.vstack(np.expand_dims([observation] * stack_size, 0))
curr_stack = switch_axes_order(curr_stack, from_type='channels_first', to_type='channels_last')
else:
curr_stack = np.append(curr_stack, np.expand_dims(np.squeeze(observation), axis=-1), axis=-1)
curr_stack = np.delete(curr_stack, 0, -1)
return curr_stack
def last_sample(state):
"""
given a batch of states, return the last sample of the batch with length 1
batch axis.
"""
return {
k: np.expand_dims(v[-1], 0)
for k, v in state.items()
}