1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/agents/dfp_agent.py
Zach Dwiel 85afb86893 temp commit
2018-02-21 10:05:57 -05:00

84 lines
3.9 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from agents.agent import *
# Direct Future Prediction Agent - http://vladlen.info/papers/learning-to-act.pdf
class DFPAgent(Agent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
self.current_goal = self.tp.agent.goal_vector
self.main_network = NetworkWrapper(tuning_parameters, False, self.has_global, 'main',
self.replicated_device, self.worker_device)
self.networks.append(self.main_network)
def learn_from_batch(self, batch):
current_states, next_states, actions, rewards, game_overs, total_returns = self.extract_batch(batch)
# create the inputs for the network
input = current_states
input.append(np.repeat(np.expand_dims(self.current_goal, 0), self.tp.batch_size, 0))
# get the current outputs of the network
targets = self.main_network.online_network.predict(input)
# change the targets for the taken actions
for i in range(self.tp.batch_size):
targets[i, actions[i]] = batch[i].info['future_measurements'].flatten()
result = self.main_network.train_and_sync_networks(current_states, targets)
total_loss = result[0]
return total_loss
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
# convert to batch so we can run it through the network
observation = np.expand_dims(np.array(curr_state['observation']), 0)
measurements = np.expand_dims(np.array(curr_state['measurements']), 0)
goal = np.expand_dims(self.current_goal, 0)
# predict the future measurements
measurements_future_prediction = self.main_network.online_network.predict([observation, measurements, goal])[0]
action_values = np.zeros((self.action_space_size,))
num_steps_used_for_objective = len(self.tp.agent.future_measurements_weights)
# calculate the score of each action by multiplying it's future measurements with the goal vector
for action_idx in range(self.action_space_size):
action_measurements = measurements_future_prediction[action_idx]
action_measurements = np.reshape(action_measurements,
(self.tp.agent.num_predicted_steps_ahead, self.measurements_size[0]))
future_steps_values = np.dot(action_measurements, self.current_goal)
action_values[action_idx] = np.dot(future_steps_values[-num_steps_used_for_objective:],
self.tp.agent.future_measurements_weights)
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
if phase == RunPhase.TRAIN:
action = self.exploration_policy.get_action(action_values)
else:
action = np.argmax(action_values)
action_values = action_values.squeeze()
# store information for plotting interactively (actual plotting is done in agent)
if self.tp.visualization.plot_action_values_online:
for idx, action_name in enumerate(self.env.actions_description):
self.episode_running_info[action_name].append(action_values[idx])
action_info = {"action_probability": 0, "action_value": action_values[action]}
return action, action_info