1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/agents/value_optimization_agent.py
Itai Caspi a7206ed702 Multiple improvements and bug fixes (#66)
* Multiple improvements and bug fixes:

    * Using lazy stacking to save on memory when using a replay buffer
    * Remove step counting for evaluation episodes
    * Reset game between heatup and training
    * Major bug fixes in NEC (is reproducing the paper results for pong now)
    * Image input rescaling to 0-1 is now optional
    * Change the terminal title to be the experiment name
    * Observation cropping for atari is now optional
    * Added random number of noop actions for gym to match the dqn paper
    * Fixed a bug where the evaluation episodes won't start with the max possible ale lives
    * Added a script for plotting the results of an experiment over all the atari games
2018-02-26 12:29:07 +02:00

78 lines
3.4 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
from agents.agent import Agent
from architectures.network_wrapper import NetworkWrapper
from utils import RunPhase, Signal
class ValueOptimizationAgent(Agent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0, create_target_network=True):
Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
self.main_network = NetworkWrapper(tuning_parameters, create_target_network, self.has_global, 'main',
self.replicated_device, self.worker_device)
self.networks.append(self.main_network)
self.q_values = Signal("Q")
self.signals.append(self.q_values)
self.reset_game(do_not_reset_env=True)
# Algorithms for which q_values are calculated from predictions will override this function
def get_q_values(self, prediction):
return prediction
def get_prediction(self, curr_state):
return self.main_network.online_network.predict(self.tf_input_state(curr_state))
def _validate_action(self, policy, action):
if np.array(action).shape != ():
raise ValueError((
'The exploration_policy {} returned a vector of actions '
'instead of a single action. ValueOptimizationAgents '
'require exploration policies which return a single action.'
).format(policy.__class__.__name__))
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
prediction = self.get_prediction(curr_state)
actions_q_values = self.get_q_values(prediction)
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
if phase == RunPhase.TRAIN:
exploration_policy = self.exploration_policy
else:
exploration_policy = self.evaluation_exploration_policy
action = exploration_policy.get_action(actions_q_values)
self._validate_action(exploration_policy, action)
# this is for bootstrapped dqn
if type(actions_q_values) == list and len(actions_q_values) > 0:
actions_q_values = actions_q_values[self.exploration_policy.selected_head]
actions_q_values = actions_q_values.squeeze()
# store the q values statistics for logging
self.q_values.add_sample(actions_q_values)
# store information for plotting interactively (actual plotting is done in agent)
if self.tp.visualization.plot_action_values_online:
for idx, action_name in enumerate(self.env.actions_description):
self.episode_running_info[action_name].append(actions_q_values[idx])
action_value = {"action_value": actions_q_values[action], "max_action_value": np.max(actions_q_values)}
return action, action_value