mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
76 lines
3.2 KiB
Python
76 lines
3.2 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from agents.value_optimization_agent import *
|
|
|
|
|
|
# Normalized Advantage Functions - https://arxiv.org/pdf/1603.00748.pdf
|
|
class NAFAgent(ValueOptimizationAgent):
|
|
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
|
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
|
self.l_values = Signal("L")
|
|
self.a_values = Signal("Advantage")
|
|
self.mu_values = Signal("Action")
|
|
self.v_values = Signal("V")
|
|
self.signals += [self.l_values, self.a_values, self.mu_values, self.v_values]
|
|
|
|
def learn_from_batch(self, batch):
|
|
current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch)
|
|
|
|
# TD error = r + discount*v_st_plus_1 - q_st
|
|
v_st_plus_1 = self.main_network.sess.run(self.main_network.target_network.output_heads[0].V,
|
|
feed_dict={self.main_network.target_network.inputs[0]: next_states})
|
|
TD_targets = np.expand_dims(rewards, -1) + (1.0 - np.expand_dims(game_overs, -1)) * self.tp.agent.discount * v_st_plus_1
|
|
|
|
if len(actions.shape) == 1:
|
|
actions = np.expand_dims(actions, -1)
|
|
|
|
result = self.main_network.train_and_sync_networks([current_states, actions], TD_targets)
|
|
total_loss = result[0]
|
|
|
|
return total_loss
|
|
|
|
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
|
assert not self.env.discrete_controls, 'NAF works only for continuous control problems'
|
|
|
|
# convert to batch so we can run it through the network
|
|
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
|
naf_head = self.main_network.online_network.output_heads[0]
|
|
action_values = self.main_network.sess.run(naf_head.mu,
|
|
feed_dict={self.main_network.online_network.inputs[0]: observation})
|
|
if phase == RunPhase.TRAIN:
|
|
action = self.exploration_policy.get_action(action_values)
|
|
else:
|
|
action = action_values
|
|
|
|
Q, L, A, mu, V = self.main_network.sess.run(
|
|
[naf_head.Q, naf_head.L, naf_head.A, naf_head.mu, naf_head.V],
|
|
feed_dict={
|
|
self.main_network.online_network.inputs[0]: observation,
|
|
self.main_network.online_network.inputs[1]: action_values
|
|
}
|
|
)
|
|
|
|
# store the q values statistics for logging
|
|
self.q_values.add_sample(Q)
|
|
self.l_values.add_sample(L)
|
|
self.a_values.add_sample(A)
|
|
self.mu_values.add_sample(mu)
|
|
self.v_values.add_sample(V)
|
|
|
|
action_value = {"action_value": Q}
|
|
return action, action_value
|