1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/agents/nec_agent.py
Gal Leibovich 1d4c3455e7 coach v0.8.0
2017-10-19 13:10:15 +03:00

105 lines
5.1 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from agents.value_optimization_agent import *
# Neural Episodic Control - https://arxiv.org/pdf/1703.01988.pdf
class NECAgent(ValueOptimizationAgent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
create_target_network=False)
self.current_episode_state_embeddings = []
self.current_episode_actions = []
self.training_started = False
def learn_from_batch(self, batch):
if not self.main_network.online_network.output_heads[0].DND.has_enough_entries(self.tp.agent.number_of_knn):
return 0
else:
if not self.training_started:
self.training_started = True
screen.log_title("Finished collecting initial entries in DND. Starting to train network...")
current_states, next_states, actions, rewards, game_overs, total_return = self.extract_batch(batch)
result = self.main_network.train_and_sync_networks([current_states, actions], total_return)
total_loss = result[0]
return total_loss
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
# convert to batch so we can run it through the network
observation = np.expand_dims(np.array(curr_state['observation']), 0)
# get embedding
embedding = self.main_network.sess.run(self.main_network.online_network.state_embedding,
feed_dict={self.main_network.online_network.inputs[0]: observation})
self.current_episode_state_embeddings.append(embedding[0])
# get action values
if self.main_network.online_network.output_heads[0].DND.has_enough_entries(self.tp.agent.number_of_knn):
# if there are enough entries in the DND then we can query it to get the action values
actions_q_values = []
for action in range(self.action_space_size):
feed_dict = {
self.main_network.online_network.state_embedding: embedding,
self.main_network.online_network.output_heads[0].input[0]: np.array([action])
}
q_value = self.main_network.sess.run(
self.main_network.online_network.output_heads[0].output, feed_dict=feed_dict)
actions_q_values.append(q_value[0])
else:
# get only the embedding so we can insert it to the DND
actions_q_values = [0] * self.action_space_size
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
if phase == RunPhase.TRAIN:
action = self.exploration_policy.get_action(actions_q_values)
self.current_episode_actions.append(action)
else:
action = np.argmax(actions_q_values)
# store the q values statistics for logging
self.q_values.add_sample(actions_q_values)
# store information for plotting interactively (actual plotting is done in agent)
if self.tp.visualization.plot_action_values_online:
for idx, action_name in enumerate(self.env.actions_description):
self.episode_running_info[action_name].append(actions_q_values[idx])
action_value = {"action_value": actions_q_values[action]}
return action, action_value
def reset_game(self, do_not_reset_env=False):
ValueOptimizationAgent.reset_game(self, do_not_reset_env)
# make sure we already have at least one episode
if self.memory.num_complete_episodes() >= 1 and not self.in_heatup:
# get the last full episode that we have collected
episode = self.memory.get(-2)
returns = []
for i in range(episode.length()):
returns.append(episode.get_transition(i).total_return)
# Just to deal with the end of heatup where there might be a case where it ends in a middle
# of an episode, and thus when getting the episode out of the ER, it will be a complete one whereas
# the other statistics collected here, are collected only during training.
returns = returns[-len(self.current_episode_actions):]
self.main_network.online_network.output_heads[0].DND.add(self.current_episode_state_embeddings,
self.current_episode_actions, returns)
self.current_episode_state_embeddings = []
self.current_episode_actions = []