mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
71 lines
2.2 KiB
Python
71 lines
2.2 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from configurations import Preset
|
|
|
|
|
|
class Architecture:
|
|
def __init__(self, tuning_parameters, name=""):
|
|
"""
|
|
:param tuning_parameters: A Preset class instance with all the running paramaters
|
|
:type tuning_parameters: Preset
|
|
:param name: The name of the network
|
|
:param name: string
|
|
"""
|
|
self.batch_size = tuning_parameters.batch_size
|
|
self.input_depth = tuning_parameters.env.observation_stack_size
|
|
self.input_height = tuning_parameters.env.desired_observation_height
|
|
self.input_width = tuning_parameters.env.desired_observation_width
|
|
self.num_actions = tuning_parameters.env.action_space_size
|
|
self.measurements_size = tuning_parameters.env.measurements_size \
|
|
if tuning_parameters.env.measurements_size else 0
|
|
self.learning_rate = tuning_parameters.learning_rate
|
|
self.optimizer = None
|
|
self.name = name
|
|
self.tp = tuning_parameters
|
|
|
|
def get_model(self, tuning_parameters):
|
|
"""
|
|
:param tuning_parameters: A Preset class instance with all the running parameters
|
|
:type tuning_parameters: Preset
|
|
:return: A model
|
|
"""
|
|
pass
|
|
|
|
def predict(self, inputs):
|
|
pass
|
|
|
|
def train_on_batch(self, inputs, targets):
|
|
pass
|
|
|
|
def get_weights(self):
|
|
pass
|
|
|
|
def set_weights(self, weights, rate=1.0):
|
|
pass
|
|
|
|
def reset_accumulated_gradients(self):
|
|
pass
|
|
|
|
def accumulate_gradients(self, inputs, targets):
|
|
pass
|
|
|
|
def apply_and_reset_gradients(self, gradients):
|
|
pass
|
|
|
|
def apply_gradients(self, gradients):
|
|
pass
|