mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
82 lines
3.4 KiB
Python
82 lines
3.4 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
|
|
from rl_coach.agents.imitation_agent import ImitationAgent
|
|
from rl_coach.architectures.tensorflow_components.heads.policy_head import PolicyHeadParameters
|
|
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
|
|
from rl_coach.base_parameters import AgentParameters, AlgorithmParameters, NetworkParameters, InputEmbedderParameters, \
|
|
MiddlewareScheme
|
|
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
|
|
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
|
|
|
|
|
|
class BCAlgorithmParameters(AlgorithmParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.collect_new_data = False
|
|
|
|
|
|
class BCNetworkParameters(NetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
|
|
self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Medium)
|
|
self.heads_parameters = [PolicyHeadParameters()]
|
|
self.loss_weights = [1.0]
|
|
self.optimizer_type = 'Adam'
|
|
self.batch_size = 32
|
|
self.replace_mse_with_huber_loss = False
|
|
self.create_target_network = False
|
|
|
|
|
|
class BCAgentParameters(AgentParameters):
|
|
def __init__(self):
|
|
super().__init__(algorithm=BCAlgorithmParameters(),
|
|
exploration=EGreedyParameters(),
|
|
memory=EpisodicExperienceReplayParameters(),
|
|
networks={"main": BCNetworkParameters()})
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.bc_agent:BCAgent'
|
|
|
|
|
|
# Behavioral Cloning Agent
|
|
class BCAgent(ImitationAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
|
|
def learn_from_batch(self, batch):
|
|
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
|
|
|
# When using a policy head, the targets refer to the advantages that we are normally feeding the head with.
|
|
# In this case, we need the policy head to just predict probabilities, so while we usually train the network
|
|
# with log(Pi)*Advantages, in this specific case we will train it to log(Pi), which after the softmax will
|
|
# predict Pi (=probabilities)
|
|
targets = np.ones(batch.actions().shape[0])
|
|
|
|
result = self.networks['main'].train_and_sync_networks({**batch.states(network_keys),
|
|
'output_0_0': batch.actions()},
|
|
targets)
|
|
total_loss, losses, unclipped_grads = result[:3]
|
|
|
|
return total_loss, losses, unclipped_grads
|
|
|