1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/agents/human_agent.py
2018-08-27 10:54:11 +03:00

116 lines
4.3 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from collections import OrderedDict
from typing import Union
import pygame
from pandas import to_pickle
from rl_coach.agents.agent import Agent
from rl_coach.agents.bc_agent import BCNetworkParameters
from rl_coach.architectures.tensorflow_components.heads.policy_head import PolicyHeadParameters
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, InputEmbedderParameters, EmbedderScheme, \
AgentParameters
from rl_coach.core_types import ActionInfo
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
from rl_coach.logger import screen
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
class HumanAlgorithmParameters(AlgorithmParameters):
def __init__(self):
super().__init__()
class HumanNetworkParameters(NetworkParameters):
def __init__(self):
super().__init__()
self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
self.input_embedders_parameters['observation'].scheme = EmbedderScheme.Medium
self.middleware_parameters = FCMiddlewareParameters()
self.heads_parameters = [PolicyHeadParameters()]
self.loss_weights = [1.0]
self.optimizer_type = 'Adam'
self.batch_size = 32
self.replace_mse_with_huber_loss = False
self.create_target_network = False
class HumanAgentParameters(AgentParameters):
def __init__(self):
super().__init__(algorithm=HumanAlgorithmParameters(),
exploration=EGreedyParameters(),
memory=EpisodicExperienceReplayParameters(),
networks={"main": BCNetworkParameters()})
@property
def path(self):
return 'rl_coach.agents.human_agent:HumanAgent'
class HumanAgent(Agent):
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
super().__init__(agent_parameters, parent)
self.clock = pygame.time.Clock()
self.max_fps = int(self.ap.visualization.max_fps_for_human_control)
self.env = None
def init_environment_dependent_modules(self):
super().init_environment_dependent_modules()
self.env = self.parent_level_manager._real_environment
screen.log_title("Human Control Mode")
available_keys = self.env.get_available_keys()
if available_keys:
screen.log("Use keyboard keys to move. Press escape to quit. Available keys:")
screen.log("")
for action, key in self.env.get_available_keys():
screen.log("\t- {}: {}".format(action, key))
screen.separator()
def train(self):
return 0
def choose_action(self, curr_state):
action = ActionInfo(self.env.get_action_from_user(), action_value=0)
action = self.output_filter.reverse_filter(action)
# keep constant fps
self.clock.tick(self.max_fps)
if not self.env.renderer.is_open:
self.save_replay_buffer_and_exit()
return action
def save_replay_buffer_and_exit(self):
replay_buffer_path = os.path.join(self.agent_logger.experiments_path, 'replay_buffer.p')
self.memory.tp = None
to_pickle(self.memory, replay_buffer_path)
screen.log_title("Replay buffer was stored in {}".format(replay_buffer_path))
exit()
def log_to_screen(self):
# log to screen
log = OrderedDict()
log["Episode"] = self.current_episode
log["Total reward"] = round(self.total_reward_in_current_episode, 2)
log["Steps"] = self.total_steps_counter
screen.log_dict(log, prefix="Recording")