mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
46 lines
2.0 KiB
Python
46 lines
2.0 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import tensorflow as tf
|
|
|
|
from rl_coach.architectures.tensorflow_components.heads.head import Head, normalized_columns_initializer, HeadParameters
|
|
from rl_coach.base_parameters import AgentParameters
|
|
from rl_coach.core_types import VStateValue
|
|
from rl_coach.spaces import SpacesDefinition
|
|
|
|
|
|
class VHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='v_head_params'):
|
|
super().__init__(parameterized_class=VHead, activation_function=activation_function, name=name)
|
|
|
|
|
|
class VHead(Head):
|
|
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
|
|
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu'):
|
|
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
|
|
self.name = 'v_values_head'
|
|
self.return_type = VStateValue
|
|
|
|
if agent_parameters.network_wrappers[self.network_name.split('/')[0]].replace_mse_with_huber_loss:
|
|
self.loss_type = tf.losses.huber_loss
|
|
else:
|
|
self.loss_type = tf.losses.mean_squared_error
|
|
|
|
def _build_module(self, input_layer):
|
|
# Standard V Network
|
|
self.output = tf.layers.dense(input_layer, 1, name='output',
|
|
kernel_initializer=normalized_columns_initializer(1.0))
|