mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
144 lines
5.2 KiB
Python
144 lines
5.2 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from enum import Enum
|
|
|
|
import gym
|
|
import numpy as np
|
|
from gym import spaces
|
|
|
|
|
|
class ExplorationChain(gym.Env):
|
|
metadata = {
|
|
'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 30
|
|
}
|
|
|
|
class ObservationType(Enum):
|
|
OneHot = 0
|
|
Therm = 1
|
|
|
|
def __init__(self, chain_length=16, start_state=1, max_steps=None, observation_type=ObservationType.Therm,
|
|
left_state_reward=1/1000, right_state_reward=1, simple_render=True):
|
|
super().__init__()
|
|
if chain_length <= 3:
|
|
raise ValueError('Chain length must be > 3, found {}'.format(chain_length))
|
|
if not 0 <= start_state < chain_length:
|
|
raise ValueError('The start state should be within the chain bounds, found {}'.format(start_state))
|
|
self.chain_length = chain_length
|
|
self.start_state = start_state
|
|
self.max_steps = max_steps
|
|
self.observation_type = observation_type
|
|
self.left_state_reward = left_state_reward
|
|
self.right_state_reward = right_state_reward
|
|
self.simple_render = simple_render
|
|
|
|
# spaces documentation: https://gym.openai.com/docs/
|
|
self.action_space = spaces.Discrete(2) # 0 -> Go left, 1 -> Go right
|
|
self.observation_space = spaces.Box(0, 1, shape=(chain_length,))#spaces.MultiBinary(chain_length)
|
|
|
|
self.reset()
|
|
|
|
def _terminate(self):
|
|
return self.steps >= self.max_steps
|
|
|
|
def _reward(self):
|
|
if self.state == 0:
|
|
return self.left_state_reward
|
|
elif self.state == self.chain_length - 1:
|
|
return self.right_state_reward
|
|
else:
|
|
return 0
|
|
|
|
def step(self, action):
|
|
# action is 0 or 1
|
|
if action == 0:
|
|
if 0 < self.state:
|
|
self.state -= 1
|
|
elif action == 1:
|
|
if self.state < self.chain_length - 1:
|
|
self.state += 1
|
|
else:
|
|
raise ValueError("An invalid action was given. The available actions are - 0 or 1, found {}".format(action))
|
|
|
|
self.steps += 1
|
|
|
|
return self._get_obs(), self._reward(), self._terminate(), {}
|
|
|
|
def reset(self):
|
|
self.steps = 0
|
|
|
|
self.state = self.start_state
|
|
|
|
return self._get_obs()
|
|
|
|
def _get_obs(self):
|
|
self.observation = np.zeros((self.chain_length,))
|
|
if self.observation_type == self.ObservationType.OneHot:
|
|
self.observation[self.state] = 1
|
|
elif self.observation_type == self.ObservationType.Therm:
|
|
self.observation[:(self.state+1)] = 1
|
|
|
|
return self.observation
|
|
|
|
def render(self, mode='human', close=False):
|
|
if self.simple_render:
|
|
observation = np.zeros((20, 20*self.chain_length))
|
|
observation[:, self.state*20:(self.state+1)*20] = 255
|
|
return observation
|
|
else:
|
|
# lazy loading of networkx and matplotlib to allow using the environment without installing them if
|
|
# necessary
|
|
import networkx as nx
|
|
from networkx.drawing.nx_agraph import graphviz_layout
|
|
import matplotlib.pyplot as plt
|
|
|
|
if not hasattr(self, 'G'):
|
|
self.states = list(range(self.chain_length))
|
|
self.G = nx.DiGraph(directed=True)
|
|
for i, origin_state in enumerate(self.states):
|
|
if i < self.chain_length - 1:
|
|
self.G.add_edge(origin_state,
|
|
origin_state + 1,
|
|
weight=0.5)
|
|
if i > 0:
|
|
self.G.add_edge(origin_state,
|
|
origin_state - 1,
|
|
weight=0.5, )
|
|
if i == 0 or i < self.chain_length - 1:
|
|
self.G.add_edge(origin_state,
|
|
origin_state,
|
|
weight=0.5, )
|
|
|
|
fig = plt.gcf()
|
|
if np.all(fig.get_size_inches() != [10, 2]):
|
|
fig.set_size_inches(5, 1)
|
|
color = ['y']*(len(self.G))
|
|
color[self.state] = 'r'
|
|
options = {
|
|
'node_color': color,
|
|
'node_size': 50,
|
|
'width': 1,
|
|
'arrowstyle': '-|>',
|
|
'arrowsize': 5,
|
|
'font_size': 6
|
|
}
|
|
pos = graphviz_layout(self.G, prog='dot', args='-Grankdir=LR')
|
|
nx.draw_networkx(self.G, pos, arrows=True, **options)
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
return data
|