1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/exploration_policies/bootstrapped.py
2018-08-27 10:54:11 +03:00

78 lines
3.4 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List
import numpy as np
from rl_coach.core_types import RunPhase, ActionType
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
from rl_coach.exploration_policies.e_greedy import EGreedy, EGreedyParameters
from rl_coach.exploration_policies.exploration_policy import ExplorationParameters
from rl_coach.schedules import Schedule, LinearSchedule
from rl_coach.spaces import ActionSpace
class BootstrappedParameters(EGreedyParameters):
def __init__(self):
super().__init__()
self.architecture_num_q_heads = 10
self.bootstrapped_data_sharing_probability = 1.0
self.epsilon_schedule = LinearSchedule(1, 0.01, 1000000)
@property
def path(self):
return 'rl_coach.exploration_policies.bootstrapped:Bootstrapped'
class Bootstrapped(EGreedy):
def __init__(self, action_space: ActionSpace, epsilon_schedule: Schedule, evaluation_epsilon: float,
architecture_num_q_heads: int,
continuous_exploration_policy_parameters: ExplorationParameters = AdditiveNoiseParameters(),):
"""
:param action_space: the action space used by the environment
:param epsilon_schedule: a schedule for the epsilon values
:param evaluation_epsilon: the epsilon value to use for evaluation phases
:param continuous_exploration_policy_parameters: the parameters of the continuous exploration policy to use
if the e-greedy is used for a continuous policy
:param architecture_num_q_heads: the number of q heads to select from
"""
super().__init__(action_space, epsilon_schedule, evaluation_epsilon, continuous_exploration_policy_parameters)
self.num_heads = architecture_num_q_heads
self.selected_head = 0
self.last_action_values = 0
def select_head(self):
self.selected_head = np.random.randint(self.num_heads)
def get_action(self, action_values: List[ActionType]) -> ActionType:
# action values are none in case the exploration policy is going to select a random action
if action_values is not None:
if self.phase == RunPhase.TRAIN:
action_values = action_values[self.selected_head]
else:
# ensemble voting for evaluation
top_action_votings = np.argmax(action_values, axis=-1)
counts = np.bincount(top_action_votings.squeeze())
top_action = np.argmax(counts)
# convert the top action to a one hot vector and pass it to e-greedy
action_values = np.eye(len(self.action_space.actions))[[top_action]]
self.last_action_values = action_values
return super().get_action(action_values)
def get_control_param(self):
return self.selected_head