1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00
Files
coach/rl_coach/architectures/embedder_parameters.py
Sina Afrooze 67a90ee87e Add tensor input type for arbitrary dimensional observation (#125)
* Allow arbitrary dimensional observation (non vector or image)
* Added creating PlanarMapsObservationSpace to GymEnvironment when number of channels is not 1 or 3
2018-11-19 16:41:12 +02:00

42 lines
1.7 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List, Union
from rl_coach.base_parameters import EmbedderScheme, NetworkComponentParameters
class InputEmbedderParameters(NetworkComponentParameters):
def __init__(self, activation_function: str='relu', scheme: Union[List, EmbedderScheme]=EmbedderScheme.Medium,
batchnorm: bool=False, dropout_rate: float=0.0, name: str='embedder', input_rescaling=None,
input_offset=None, input_clipping=None, dense_layer=None, is_training=False):
super().__init__(dense_layer=dense_layer)
self.activation_function = activation_function
self.scheme = scheme
self.batchnorm = batchnorm
self.dropout_rate = dropout_rate
if input_rescaling is None:
input_rescaling = {'image': 255.0, 'vector': 1.0, 'tensor': 1.0}
if input_offset is None:
input_offset = {'image': 0.0, 'vector': 0.0, 'tensor': 0.0}
self.input_rescaling = input_rescaling
self.input_offset = input_offset
self.input_clipping = input_clipping
self.name = name
self.is_training = is_training