mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 19:50:17 +01:00
82 lines
2.8 KiB
Python
82 lines
2.8 KiB
Python
import os
|
|
import sys
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
|
|
|
|
import pytest
|
|
|
|
from rl_coach.spaces import DiscreteActionSpace
|
|
from rl_coach.exploration_policies.e_greedy import EGreedy
|
|
from rl_coach.schedules import LinearSchedule
|
|
import numpy as np
|
|
from rl_coach.core_types import RunPhase
|
|
|
|
|
|
@pytest.mark.unit_test
|
|
def test_get_action():
|
|
# discrete control
|
|
action_space = DiscreteActionSpace(3)
|
|
epsilon_schedule = LinearSchedule(1.0, 1.0, 1000)
|
|
policy = EGreedy(action_space, epsilon_schedule, evaluation_epsilon=0)
|
|
|
|
# verify that test phase gives greedy actions (evaluation_epsilon = 0)
|
|
policy.change_phase(RunPhase.TEST)
|
|
for i in range(100):
|
|
best_action = policy.get_action(np.array([10, 20, 30]))
|
|
assert best_action == 2
|
|
|
|
# verify that train phase gives uniform actions (exploration = 1)
|
|
policy.change_phase(RunPhase.TRAIN)
|
|
counters = np.array([0, 0, 0])
|
|
for i in range(30000):
|
|
best_action = policy.get_action(np.array([10, 20, 30]))
|
|
counters[best_action] += 1
|
|
assert np.all(counters > 9500) # this is noisy so we allow 5% error
|
|
|
|
# TODO: test continuous actions
|
|
|
|
|
|
@pytest.mark.unit_test
|
|
def test_change_phase():
|
|
# discrete control
|
|
action_space = DiscreteActionSpace(3)
|
|
epsilon_schedule = LinearSchedule(1.0, 0.1, 1000)
|
|
policy = EGreedy(action_space, epsilon_schedule, evaluation_epsilon=0.01)
|
|
|
|
# verify schedule not applying if not in training phase
|
|
assert policy.get_control_param() == 1.0
|
|
policy.change_phase(RunPhase.TEST)
|
|
best_action = policy.get_action(np.array([10, 20, 30]))
|
|
assert policy.epsilon_schedule.current_value == 1.0
|
|
policy.change_phase(RunPhase.HEATUP)
|
|
best_action = policy.get_action(np.array([10, 20, 30]))
|
|
assert policy.epsilon_schedule.current_value == 1.0
|
|
policy.change_phase(RunPhase.UNDEFINED)
|
|
best_action = policy.get_action(np.array([10, 20, 30]))
|
|
assert policy.epsilon_schedule.current_value == 1.0
|
|
|
|
|
|
@pytest.mark.unit_test
|
|
def test_get_control_param():
|
|
# discrete control
|
|
action_space = DiscreteActionSpace(3)
|
|
epsilon_schedule = LinearSchedule(1.0, 0.1, 1000)
|
|
policy = EGreedy(action_space, epsilon_schedule, evaluation_epsilon=0.01)
|
|
|
|
# verify schedule applies to TRAIN phase
|
|
policy.change_phase(RunPhase.TRAIN)
|
|
for i in range(999):
|
|
best_action = policy.get_action(np.array([10, 20, 30]))
|
|
assert 1.0 > policy.get_control_param() > 0.1
|
|
best_action = policy.get_action(np.array([10, 20, 30]))
|
|
assert policy.get_control_param() == 0.1
|
|
|
|
# test phases
|
|
policy.change_phase(RunPhase.TEST)
|
|
assert policy.get_control_param() == 0.01
|
|
|
|
policy.change_phase(RunPhase.TRAIN)
|
|
assert policy.get_control_param() == 0.1
|
|
|
|
policy.change_phase(RunPhase.HEATUP)
|
|
assert policy.get_control_param() == 0.1
|