1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/training_worker.py
2018-10-23 16:51:48 -04:00

103 lines
3.7 KiB
Python

"""
"""
import argparse
import time
from rl_coach.base_parameters import TaskParameters
from rl_coach.coach import expand_preset
from rl_coach import core_types
from rl_coach.utils import short_dynamic_import
from rl_coach.memories.non_episodic.distributed_experience_replay import DistributedExperienceReplay
from rl_coach.memories.memory import MemoryGranularity
# Q: specify alternative distributed memory, or should this go in the preset?
# A: preset must define distributed memory to be used. we aren't going to take a non-distributed preset and automatically distribute it.
def heatup(graph_manager):
memory = DistributedExperienceReplay(max_size=(MemoryGranularity.Transitions, 1000000),
redis_ip=graph_manager.agent_params.memory.redis_ip,
redis_port=graph_manager.agent_params.memory.redis_port)
while(memory.num_transitions() < graph_manager.heatup_steps.num_steps):
time.sleep(1)
class StepsLoop(object):
"""StepsLoop facilitates a simple while loop"""
def __init__(self, steps_counters, phase, steps):
super(StepsLoop, self).__init__()
self.steps_counters = steps_counters
self.phase = phase
self.steps = steps
self.step_end = self._step_count() + steps.num_steps
def _step_count(self):
return self.steps_counters[self.phase][self.steps.__class__]
def continue(self):
return self._step_count() < count_end:
def training_worker(graph_manager, checkpoint_dir):
"""
restore a checkpoint then perform rollouts using the restored model
"""
# initialize graph
task_parameters = TaskParameters()
task_parameters.__dict__['save_checkpoint_dir'] = checkpoint_dir
graph_manager.create_graph(task_parameters)
# save randomly initialized graph
graph_manager.save_checkpoint()
# optionally wait for a specific number of transitions to be in memory before training
heatup(graph_manager)
# training loop
stepper = StepsLoop(graph_manager.total_steps_counters, RunPhase.TRAIN, graph_manager.improve_steps)
while stepper.continue():
graph_manager.phase = core_types.RunPhase.TRAIN
graph_manager.train(core_types.TrainingSteps(1))
graph_manager.phase = core_types.RunPhase.UNDEFINED
graph_manager.evaluate(graph_manager.evaluation_steps)
graph_manager.save_checkpoint()
# TODO: signal to workers that training is done
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--preset',
help="(string) Name of a preset to run (class name from the 'presets' directory.)",
type=str,
required=True)
parser.add_argument('--checkpoint_dir',
help='(string) Path to a folder containing a checkpoint to write the model to.',
type=str,
default='/checkpoint')
parser.add_argument('-r', '--redis_ip',
help="(string) IP or host for the redis server",
default='localhost',
type=str)
parser.add_argument('-rp', '--redis_port',
help="(int) Port of the redis server",
default=6379,
type=int)
args = parser.parse_args()
graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True)
graph_manager.agent_params.memory.redis_ip = args.redis_ip
graph_manager.agent_params.memory.redis_port = args.redis_port
training_worker(
graph_manager=graph_manager,
checkpoint_dir=args.checkpoint_dir,
)
if __name__ == '__main__':
main()