mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
* Adding initial interface for backend and redis pubsub * Addressing comments, adding super in all memories * Removing distributed experience replay
311 lines
12 KiB
Python
311 lines
12 KiB
Python
import os
|
|
import uuid
|
|
import json
|
|
import time
|
|
from typing import List
|
|
from rl_coach.orchestrators.deploy import Deploy, DeployParameters
|
|
from kubernetes import client, config
|
|
from rl_coach.memories.backend.memory import MemoryBackendParameters
|
|
from rl_coach.memories.backend.memory_impl import get_memory_backend
|
|
|
|
|
|
class RunTypeParameters():
|
|
|
|
def __init__(self, image: str, command: list(), arguments: list() = None,
|
|
run_type: str = "trainer", checkpoint_dir: str = "/checkpoint",
|
|
num_replicas: int = 1, orchestration_params: dict=None):
|
|
self.image = image
|
|
self.command = command
|
|
if not arguments:
|
|
arguments = list()
|
|
self.arguments = arguments
|
|
self.run_type = run_type
|
|
self.checkpoint_dir = checkpoint_dir
|
|
self.num_replicas = num_replicas
|
|
if not orchestration_params:
|
|
orchestration_params = dict()
|
|
self.orchestration_params = orchestration_params
|
|
|
|
|
|
class KubernetesParameters(DeployParameters):
|
|
|
|
def __init__(self, run_type_params: List[RunTypeParameters], kubeconfig: str = None, namespace: str = "", nfs_server: str = None,
|
|
nfs_path: str = None, checkpoint_dir: str = '/checkpoint', memory_backend_parameters: MemoryBackendParameters = None):
|
|
|
|
self.run_type_params = {}
|
|
for run_type_param in run_type_params:
|
|
self.run_type_params[run_type_param.run_type] = run_type_param
|
|
self.kubeconfig = kubeconfig
|
|
self.namespace = namespace
|
|
self.nfs_server = nfs_server
|
|
self.nfs_path = nfs_path
|
|
self.checkpoint_dir = checkpoint_dir
|
|
self.memory_backend_parameters = memory_backend_parameters
|
|
|
|
|
|
class Kubernetes(Deploy):
|
|
|
|
def __init__(self, deploy_parameters: KubernetesParameters):
|
|
super().__init__(deploy_parameters)
|
|
self.deploy_parameters = deploy_parameters
|
|
if self.deploy_parameters.kubeconfig:
|
|
config.load_kube_config()
|
|
else:
|
|
config.load_incluster_config()
|
|
|
|
if not self.deploy_parameters.namespace:
|
|
_, current_context = config.list_kube_config_contexts()
|
|
self.deploy_parameters.namespace = current_context['context']['namespace']
|
|
self.nfs_pvc_name = 'nfs-checkpoint-pvc'
|
|
|
|
if os.environ.get('http_proxy'):
|
|
client.Configuration._default.proxy = os.environ.get('http_proxy')
|
|
|
|
self.deploy_parameters.memory_backend_parameters.orchestrator_params = {'namespace': self.deploy_parameters.namespace}
|
|
self.memory_backend = get_memory_backend(self.deploy_parameters.memory_backend_parameters)
|
|
|
|
def setup(self) -> bool:
|
|
|
|
self.memory_backend.deploy()
|
|
if not self.create_nfs_resources():
|
|
return False
|
|
return True
|
|
|
|
def create_nfs_resources(self):
|
|
persistent_volume = client.V1PersistentVolume(
|
|
api_version="v1",
|
|
kind="PersistentVolume",
|
|
metadata=client.V1ObjectMeta(
|
|
name='nfs-checkpoint-pv',
|
|
labels={'app': 'nfs-checkpoint-pv'}
|
|
),
|
|
spec=client.V1PersistentVolumeSpec(
|
|
access_modes=["ReadWriteMany"],
|
|
nfs=client.V1NFSVolumeSource(
|
|
path=self.deploy_parameters.nfs_path,
|
|
server=self.deploy_parameters.nfs_server
|
|
),
|
|
capacity={'storage': '10Gi'},
|
|
storage_class_name=""
|
|
)
|
|
)
|
|
api_client = client.CoreV1Api()
|
|
try:
|
|
api_client.create_persistent_volume(persistent_volume)
|
|
except client.rest.ApiException as e:
|
|
print("Got exception: %s\n while creating the NFS PV", e)
|
|
return False
|
|
|
|
persistent_volume_claim = client.V1PersistentVolumeClaim(
|
|
api_version="v1",
|
|
kind="PersistentVolumeClaim",
|
|
metadata=client.V1ObjectMeta(
|
|
name="nfs-checkpoint-pvc"
|
|
),
|
|
spec=client.V1PersistentVolumeClaimSpec(
|
|
access_modes=["ReadWriteMany"],
|
|
resources=client.V1ResourceRequirements(
|
|
requests={'storage': '10Gi'}
|
|
),
|
|
selector=client.V1LabelSelector(
|
|
match_labels={'app': 'nfs-checkpoint-pv'}
|
|
),
|
|
storage_class_name=""
|
|
)
|
|
)
|
|
|
|
try:
|
|
api_client.create_namespaced_persistent_volume_claim(self.deploy_parameters.namespace, persistent_volume_claim)
|
|
except client.rest.ApiException as e:
|
|
print("Got exception: %s\n while creating the NFS PVC", e)
|
|
return False
|
|
return True
|
|
|
|
def deploy_trainer(self) -> bool:
|
|
|
|
trainer_params = self.deploy_parameters.run_type_params.get('trainer', None)
|
|
if not trainer_params:
|
|
return False
|
|
|
|
trainer_params.command += ['--memory_backend_params', json.dumps(self.deploy_parameters.memory_backend_parameters.__dict__)]
|
|
name = "{}-{}".format(trainer_params.run_type, uuid.uuid4())
|
|
|
|
container = client.V1Container(
|
|
name=name,
|
|
image=trainer_params.image,
|
|
command=trainer_params.command,
|
|
args=trainer_params.arguments,
|
|
image_pull_policy='Always',
|
|
volume_mounts=[client.V1VolumeMount(
|
|
name='nfs-pvc',
|
|
mount_path=trainer_params.checkpoint_dir
|
|
)]
|
|
)
|
|
template = client.V1PodTemplateSpec(
|
|
metadata=client.V1ObjectMeta(labels={'app': name}),
|
|
spec=client.V1PodSpec(
|
|
containers=[container],
|
|
volumes=[client.V1Volume(
|
|
name="nfs-pvc",
|
|
persistent_volume_claim=client.V1PersistentVolumeClaimVolumeSource(
|
|
claim_name=self.nfs_pvc_name
|
|
)
|
|
)]
|
|
),
|
|
)
|
|
deployment_spec = client.V1DeploymentSpec(
|
|
replicas=trainer_params.num_replicas,
|
|
template=template,
|
|
selector=client.V1LabelSelector(
|
|
match_labels={'app': name}
|
|
)
|
|
)
|
|
|
|
deployment = client.V1Deployment(
|
|
api_version='apps/v1',
|
|
kind='Deployment',
|
|
metadata=client.V1ObjectMeta(name=name),
|
|
spec=deployment_spec
|
|
)
|
|
|
|
api_client = client.AppsV1Api()
|
|
try:
|
|
api_client.create_namespaced_deployment(self.deploy_parameters.namespace, deployment)
|
|
trainer_params.orchestration_params['deployment_name'] = name
|
|
return True
|
|
except client.rest.ApiException as e:
|
|
print("Got exception: %s\n while creating deployment", e)
|
|
return False
|
|
|
|
def deploy_worker(self):
|
|
|
|
worker_params = self.deploy_parameters.run_type_params.get('worker', None)
|
|
if not worker_params:
|
|
return False
|
|
|
|
worker_params.command += ['--memory_backend_params', json.dumps(self.deploy_parameters.memory_backend_parameters.__dict__)]
|
|
name = "{}-{}".format(worker_params.run_type, uuid.uuid4())
|
|
|
|
container = client.V1Container(
|
|
name=name,
|
|
image=worker_params.image,
|
|
command=worker_params.command,
|
|
args=worker_params.arguments,
|
|
image_pull_policy='Always',
|
|
volume_mounts=[client.V1VolumeMount(
|
|
name='nfs-pvc',
|
|
mount_path=worker_params.checkpoint_dir
|
|
)]
|
|
)
|
|
template = client.V1PodTemplateSpec(
|
|
metadata=client.V1ObjectMeta(labels={'app': name}),
|
|
spec=client.V1PodSpec(
|
|
containers=[container],
|
|
volumes=[client.V1Volume(
|
|
name="nfs-pvc",
|
|
persistent_volume_claim=client.V1PersistentVolumeClaimVolumeSource(
|
|
claim_name=self.nfs_pvc_name
|
|
)
|
|
)],
|
|
),
|
|
)
|
|
|
|
deployment_spec = client.V1DeploymentSpec(
|
|
replicas=worker_params.num_replicas,
|
|
template=template,
|
|
selector=client.V1LabelSelector(
|
|
match_labels={'app': name}
|
|
)
|
|
)
|
|
deployment = client.V1Deployment(
|
|
api_version='apps/v1',
|
|
kind="Deployment",
|
|
metadata=client.V1ObjectMeta(name=name),
|
|
spec=deployment_spec
|
|
)
|
|
|
|
api_client = client.AppsV1Api()
|
|
try:
|
|
api_client.create_namespaced_deployment(self.deploy_parameters.namespace, deployment)
|
|
worker_params.orchestration_params['deployment_name'] = name
|
|
return True
|
|
except client.rest.ApiException as e:
|
|
print("Got exception: %s\n while creating deployment", e)
|
|
return False
|
|
|
|
def worker_logs(self):
|
|
pass
|
|
|
|
def trainer_logs(self):
|
|
trainer_params = self.deploy_parameters.run_type_params.get('trainer', None)
|
|
if not trainer_params:
|
|
return
|
|
|
|
api_client = client.CoreV1Api()
|
|
pod = None
|
|
try:
|
|
pods = api_client.list_namespaced_pod(self.deploy_parameters.namespace, label_selector='app={}'.format(
|
|
trainer_params.orchestration_params['deployment_name']
|
|
))
|
|
|
|
pod = pods.items[0]
|
|
except client.rest.ApiException as e:
|
|
print("Got exception: %s\n while reading pods", e)
|
|
return
|
|
|
|
if not pod:
|
|
return
|
|
|
|
self.tail_log(pod.metadata.name, api_client)
|
|
|
|
def tail_log(self, pod_name, corev1_api):
|
|
while True:
|
|
time.sleep(10)
|
|
# Try to tail the pod logs
|
|
try:
|
|
print(corev1_api.read_namespaced_pod_log(
|
|
pod_name, self.deploy_parameters.namespace, follow=True
|
|
), flush=True)
|
|
except client.rest.ApiException as e:
|
|
pass
|
|
|
|
# This part will get executed if the pod is one of the following phases: not ready, failed or terminated.
|
|
# Check if the pod has errored out, else just try again.
|
|
# Get the pod
|
|
try:
|
|
pod = corev1_api.read_namespaced_pod(pod_name, self.deploy_parameters.namespace)
|
|
except client.rest.ApiException as e:
|
|
continue
|
|
|
|
if not hasattr(pod, 'status') or not pod.status:
|
|
continue
|
|
if not hasattr(pod.status, 'container_statuses') or not pod.status.container_statuses:
|
|
continue
|
|
|
|
for container_status in pod.status.container_statuses:
|
|
if container_status.state.waiting is not None:
|
|
if container_status.state.waiting.reason == 'Error' or \
|
|
container_status.state.waiting.reason == 'CrashLoopBackOff' or \
|
|
container_status.state.waiting.reason == 'ImagePullBackOff' or \
|
|
container_status.state.waiting.reason == 'ErrImagePull':
|
|
return
|
|
if container_status.state.terminated is not None:
|
|
return
|
|
|
|
def undeploy(self):
|
|
trainer_params = self.deploy_parameters.run_type_params.get('trainer', None)
|
|
api_client = client.AppsV1Api()
|
|
delete_options = client.V1DeleteOptions()
|
|
if trainer_params:
|
|
try:
|
|
api_client.delete_namespaced_deployment(trainer_params.orchestration_params['deployment_name'], self.deploy_parameters.namespace, delete_options)
|
|
except client.rest.ApiException as e:
|
|
print("Got exception: %s\n while deleting trainer", e)
|
|
worker_params = self.deploy_parameters.run_type_params.get('worker', None)
|
|
if worker_params:
|
|
try:
|
|
api_client.delete_namespaced_deployment(worker_params.orchestration_params['deployment_name'], self.deploy_parameters.namespace, delete_options)
|
|
except client.rest.ApiException as e:
|
|
print("Got exception: %s\n while deleting workers", e)
|
|
self.memory_backend.undeploy()
|