1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/rollout_worker.py
Ajay Deshpande 6b2de6ba6d Adding initial interface for backend and redis pubsub (#19)
* Adding initial interface for backend and redis pubsub

* Addressing comments, adding super in all memories

* Removing distributed experience replay
2018-10-23 16:51:48 -04:00

111 lines
3.5 KiB
Python

"""
this rollout worker:
- restores a model from disk
- evaluates a predefined number of episodes
- contributes them to a distributed memory
- exits
"""
import argparse
import time
import os
import json
from rl_coach.base_parameters import TaskParameters
from rl_coach.coach import expand_preset
from rl_coach.core_types import EnvironmentEpisodes, RunPhase
from rl_coach.utils import short_dynamic_import
from rl_coach.memories.backend.memory_impl import construct_memory_params
# Q: specify alternative distributed memory, or should this go in the preset?
# A: preset must define distributed memory to be used. we aren't going to take
# a non-distributed preset and automatically distribute it.
def has_checkpoint(checkpoint_dir):
"""
True if a checkpoint is present in checkpoint_dir
"""
return len(os.listdir(checkpoint_dir)) > 0
def wait_for_checkpoint(checkpoint_dir, timeout=10):
"""
block until there is a checkpoint in checkpoint_dir
"""
for i in range(timeout):
if has_checkpoint(checkpoint_dir):
return
time.sleep(1)
# one last time
if has_checkpoint(checkpoint_dir):
return
raise ValueError((
'Waited {timeout} seconds, but checkpoint never found in '
'{checkpoint_dir}'
).format(
timeout=timeout,
checkpoint_dir=checkpoint_dir,
))
def rollout_worker(graph_manager, checkpoint_dir):
"""
restore a checkpoint then perform rollouts using the restored model
"""
wait_for_checkpoint(checkpoint_dir)
task_parameters = TaskParameters()
task_parameters.__dict__['checkpoint_restore_dir'] = checkpoint_dir
graph_manager.create_graph(task_parameters)
graph_manager.phase = RunPhase.TRAIN
for i in range(10000000):
graph_manager.act(EnvironmentEpisodes(num_steps=10))
graph_manager.restore_checkpoint()
graph_manager.phase = RunPhase.UNDEFINED
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--preset',
help="(string) Name of a preset to run (class name from the 'presets' directory.)",
type=str,
required=True)
parser.add_argument('--checkpoint_dir',
help='(string) Path to a folder containing a checkpoint to restore the model from.',
type=str,
default='/checkpoint')
parser.add_argument('-r', '--redis_ip',
help="(string) IP or host for the redis server",
default='localhost',
type=str)
parser.add_argument('-rp', '--redis_port',
help="(int) Port of the redis server",
default=6379,
type=int)
parser.add_argument('--memory_backend_params',
help="(string) JSON string of the memory backend params",
type=str)
args = parser.parse_args()
graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True)
if args.memory_backend_params:
args.memory_backend_params = json.loads(args.memory_backend_params)
if 'run_type' not in args.memory_backend_params:
args.memory_backend_params['run_type'] = 'worker'
graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(args.memory_backend_params))
rollout_worker(
graph_manager=graph_manager,
checkpoint_dir=args.checkpoint_dir,
)
if __name__ == '__main__':
main()