mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
131 lines
5.0 KiB
Python
131 lines
5.0 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from rl_coach.utilities.shared_running_stats import SharedRunningStats
|
|
|
|
|
|
class TFSharedRunningStats(SharedRunningStats):
|
|
def __init__(self, replicated_device=None, epsilon=1e-2, name="", create_ops=True, pubsub_params=None):
|
|
super().__init__(name=name, pubsub_params=pubsub_params)
|
|
self.sess = None
|
|
self.replicated_device = replicated_device
|
|
self.epsilon = epsilon
|
|
self.ops_were_created = False
|
|
if create_ops:
|
|
with tf.device(replicated_device):
|
|
self.set_params()
|
|
|
|
def set_params(self, shape=[1], clip_values=None):
|
|
"""
|
|
set params and create ops
|
|
|
|
:param shape: shape of the stats to track
|
|
:param clip_values: if not None, sets clip min/max thresholds
|
|
"""
|
|
|
|
self.clip_values = clip_values
|
|
with tf.variable_scope(self.name):
|
|
self._sum = tf.get_variable(
|
|
dtype=tf.float64,
|
|
initializer=tf.constant_initializer(0.0),
|
|
name="running_sum", trainable=False, shape=shape, validate_shape=False,
|
|
collections=[tf.GraphKeys.GLOBAL_VARIABLES])
|
|
self._sum_squared = tf.get_variable(
|
|
dtype=tf.float64,
|
|
initializer=tf.constant_initializer(self.epsilon),
|
|
name="running_sum_squared", trainable=False, shape=shape, validate_shape=False,
|
|
collections=[tf.GraphKeys.GLOBAL_VARIABLES])
|
|
self._count = tf.get_variable(
|
|
dtype=tf.float64,
|
|
shape=(),
|
|
initializer=tf.constant_initializer(self.epsilon),
|
|
name="count", trainable=False, collections=[tf.GraphKeys.GLOBAL_VARIABLES])
|
|
|
|
self._shape = None
|
|
self._mean = tf.div(self._sum, self._count, name="mean")
|
|
self._std = tf.sqrt(tf.maximum((self._sum_squared - self._count*tf.square(self._mean))
|
|
/ tf.maximum(self._count-1, 1), self.epsilon), name="stdev")
|
|
self.tf_mean = tf.cast(self._mean, 'float32')
|
|
self.tf_std = tf.cast(self._std, 'float32')
|
|
|
|
self.new_sum = tf.placeholder(dtype=tf.float64, name='sum')
|
|
self.new_sum_squared = tf.placeholder(dtype=tf.float64, name='var')
|
|
self.newcount = tf.placeholder(shape=[], dtype=tf.float64, name='count')
|
|
|
|
self._inc_sum = tf.assign_add(self._sum, self.new_sum, use_locking=True)
|
|
self._inc_sum_squared = tf.assign_add(self._sum_squared, self.new_sum_squared, use_locking=True)
|
|
self._inc_count = tf.assign_add(self._count, self.newcount, use_locking=True)
|
|
|
|
self.raw_obs = tf.placeholder(dtype=tf.float64, name='raw_obs')
|
|
self.normalized_obs = (self.raw_obs - self._mean) / self._std
|
|
if self.clip_values is not None:
|
|
self.clipped_obs = tf.clip_by_value(self.normalized_obs, self.clip_values[0], self.clip_values[1])
|
|
|
|
self.ops_were_created = True
|
|
|
|
def set_session(self, sess):
|
|
self.sess = sess
|
|
|
|
def push_val(self, x):
|
|
x = x.astype('float64')
|
|
self.sess.run([self._inc_sum, self._inc_sum_squared, self._inc_count],
|
|
feed_dict={
|
|
self.new_sum: x.sum(axis=0).ravel(),
|
|
self.new_sum_squared: np.square(x).sum(axis=0).ravel(),
|
|
self.newcount: np.array(len(x), dtype='float64')
|
|
})
|
|
if self._shape is None:
|
|
self._shape = x.shape
|
|
|
|
@property
|
|
def n(self):
|
|
return self.sess.run(self._count)
|
|
|
|
@property
|
|
def mean(self):
|
|
return self.sess.run(self._mean)
|
|
|
|
@property
|
|
def var(self):
|
|
return self.std ** 2
|
|
|
|
@property
|
|
def std(self):
|
|
return self.sess.run(self._std)
|
|
|
|
@property
|
|
def shape(self):
|
|
return self._shape
|
|
|
|
@shape.setter
|
|
def shape(self, val):
|
|
self._shape = val
|
|
self.new_sum.set_shape(val)
|
|
self.new_sum_squared.set_shape(val)
|
|
self.tf_mean.set_shape(val)
|
|
self.tf_std.set_shape(val)
|
|
self._sum.set_shape(val)
|
|
self._sum_squared.set_shape(val)
|
|
|
|
def normalize(self, batch):
|
|
if self.clip_values is not None:
|
|
return self.sess.run(self.clipped_obs, feed_dict={self.raw_obs: batch})
|
|
else:
|
|
return self.sess.run(self.normalized_obs, feed_dict={self.raw_obs: batch})
|