1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/docs/_modules/rl_coach/agents/pal_agent.html
Itai Caspi 6d40ad1650 update of api docstrings across coach and tutorials [WIP] (#91)
* updating the documentation website
* adding the built docs
* update of api docstrings across coach and tutorials 0-2
* added some missing api documentation
* New Sphinx based documentation
2018-11-15 15:00:13 +02:00

334 lines
24 KiB
HTML

<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>rl_coach.agents.pal_agent &mdash; Reinforcement Learning Coach 0.11.0 documentation</title>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
<script src="../../../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search">
<a href="../../../index.html" class="icon icon-home"> Reinforcement Learning Coach
<img src="../../../_static/dark_logo.png" class="logo" alt="Logo"/>
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Intro</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/index.html">Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../dashboard.html">Coach Dashboard</a></li>
</ul>
<p class="caption"><span class="caption-text">Design</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../design/control_flow.html">Control Flow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../design/network.html">Network Design</a></li>
</ul>
<p class="caption"><span class="caption-text">Contributing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_agent.html">Adding a New Agent</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_env.html">Adding a New Environment</a></li>
</ul>
<p class="caption"><span class="caption-text">Components</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../components/agents/index.html">Agents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/architectures/index.html">Architectures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/environments/index.html">Environments</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/exploration_policies/index.html">Exploration Policies</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/filters/index.html">Filters</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/memories/index.html">Memories</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/core_types.html">Core Types</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/spaces.html">Spaces</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/additional_parameters.html">Additional Parameters</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">Reinforcement Learning Coach</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html">Docs</a> &raquo;</li>
<li><a href="../../index.html">Module code</a> &raquo;</li>
<li>rl_coach.agents.pal_agent</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for rl_coach.agents.pal_agent</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Copyright (c) 2017 Intel Corporation </span>
<span class="c1">#</span>
<span class="c1"># Licensed under the Apache License, Version 2.0 (the &quot;License&quot;);</span>
<span class="c1"># you may not use this file except in compliance with the License.</span>
<span class="c1"># You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="k">import</span> <span class="n">Union</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">rl_coach.agents.dqn_agent</span> <span class="k">import</span> <span class="n">DQNAgentParameters</span><span class="p">,</span> <span class="n">DQNAlgorithmParameters</span>
<span class="kn">from</span> <span class="nn">rl_coach.agents.value_optimization_agent</span> <span class="k">import</span> <span class="n">ValueOptimizationAgent</span>
<span class="kn">from</span> <span class="nn">rl_coach.memories.episodic.episodic_experience_replay</span> <span class="k">import</span> <span class="n">EpisodicExperienceReplayParameters</span>
<div class="viewcode-block" id="PALAlgorithmParameters"><a class="viewcode-back" href="../../../components/agents/value_optimization/pal.html#rl_coach.agents.pal_agent.PALAlgorithmParameters">[docs]</a><span class="k">class</span> <span class="nc">PALAlgorithmParameters</span><span class="p">(</span><span class="n">DQNAlgorithmParameters</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> :param pal_alpha: (float)</span>
<span class="sd"> A factor that weights the amount by which the advantage learning update will be taken into account.</span>
<span class="sd"> :param persistent_advantage_learning: (bool)</span>
<span class="sd"> If set to True, the persistent mode of advantage learning will be used, which encourages the agent to take</span>
<span class="sd"> the same actions one after the other instead of changing actions.</span>
<span class="sd"> :param monte_carlo_mixing_rate: (float)</span>
<span class="sd"> The amount of monte carlo values to mix into the targets of the network. The monte carlo values are just the</span>
<span class="sd"> total discounted returns, and they can help reduce the time it takes for the network to update to the newly</span>
<span class="sd"> seen values, since it is not based on bootstrapping the current network values.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pal_alpha</span> <span class="o">=</span> <span class="mf">0.9</span>
<span class="bp">self</span><span class="o">.</span><span class="n">persistent_advantage_learning</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">monte_carlo_mixing_rate</span> <span class="o">=</span> <span class="mf">0.1</span></div>
<span class="k">class</span> <span class="nc">PALAgentParameters</span><span class="p">(</span><span class="n">DQNAgentParameters</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">algorithm</span> <span class="o">=</span> <span class="n">PALAlgorithmParameters</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">memory</span> <span class="o">=</span> <span class="n">EpisodicExperienceReplayParameters</span><span class="p">()</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">path</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s1">&#39;rl_coach.agents.pal_agent:PALAgent&#39;</span>
<span class="c1"># Persistent Advantage Learning - https://arxiv.org/pdf/1512.04860.pdf</span>
<span class="k">class</span> <span class="nc">PALAgent</span><span class="p">(</span><span class="n">ValueOptimizationAgent</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">agent_parameters</span><span class="p">,</span> <span class="n">parent</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s1">&#39;LevelManager&#39;</span><span class="p">,</span> <span class="s1">&#39;CompositeAgent&#39;</span><span class="p">]</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">agent_parameters</span><span class="p">,</span> <span class="n">parent</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">alpha</span> <span class="o">=</span> <span class="n">agent_parameters</span><span class="o">.</span><span class="n">algorithm</span><span class="o">.</span><span class="n">pal_alpha</span>
<span class="bp">self</span><span class="o">.</span><span class="n">persistent</span> <span class="o">=</span> <span class="n">agent_parameters</span><span class="o">.</span><span class="n">algorithm</span><span class="o">.</span><span class="n">persistent_advantage_learning</span>
<span class="bp">self</span><span class="o">.</span><span class="n">monte_carlo_mixing_rate</span> <span class="o">=</span> <span class="n">agent_parameters</span><span class="o">.</span><span class="n">algorithm</span><span class="o">.</span><span class="n">monte_carlo_mixing_rate</span>
<span class="k">def</span> <span class="nf">learn_from_batch</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">):</span>
<span class="n">network_keys</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">ap</span><span class="o">.</span><span class="n">network_wrappers</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">input_embedders_parameters</span><span class="o">.</span><span class="n">keys</span><span class="p">()</span>
<span class="c1"># next state values</span>
<span class="n">q_st_plus_1_target</span><span class="p">,</span> <span class="n">q_st_plus_1_online</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">parallel_prediction</span><span class="p">([</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">target_network</span><span class="p">,</span> <span class="n">batch</span><span class="o">.</span><span class="n">next_states</span><span class="p">(</span><span class="n">network_keys</span><span class="p">)),</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">online_network</span><span class="p">,</span> <span class="n">batch</span><span class="o">.</span><span class="n">next_states</span><span class="p">(</span><span class="n">network_keys</span><span class="p">))</span>
<span class="p">])</span>
<span class="n">selected_actions</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">q_st_plus_1_online</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">v_st_plus_1_target</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">q_st_plus_1_target</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="c1"># current state values</span>
<span class="n">q_st_target</span><span class="p">,</span> <span class="n">q_st_online</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">parallel_prediction</span><span class="p">([</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">target_network</span><span class="p">,</span> <span class="n">batch</span><span class="o">.</span><span class="n">states</span><span class="p">(</span><span class="n">network_keys</span><span class="p">)),</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">online_network</span><span class="p">,</span> <span class="n">batch</span><span class="o">.</span><span class="n">states</span><span class="p">(</span><span class="n">network_keys</span><span class="p">))</span>
<span class="p">])</span>
<span class="n">v_st_target</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">q_st_target</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="c1"># calculate TD error</span>
<span class="n">TD_targets</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">copy</span><span class="p">(</span><span class="n">q_st_online</span><span class="p">)</span>
<span class="n">total_returns</span> <span class="o">=</span> <span class="n">batch</span><span class="o">.</span><span class="n">n_step_discounted_rewards</span><span class="p">()</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">ap</span><span class="o">.</span><span class="n">network_wrappers</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">batch_size</span><span class="p">):</span>
<span class="n">TD_targets</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">batch</span><span class="o">.</span><span class="n">actions</span><span class="p">()[</span><span class="n">i</span><span class="p">]]</span> <span class="o">=</span> <span class="n">batch</span><span class="o">.</span><span class="n">rewards</span><span class="p">()[</span><span class="n">i</span><span class="p">]</span> <span class="o">+</span> \
<span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">batch</span><span class="o">.</span><span class="n">game_overs</span><span class="p">()[</span><span class="n">i</span><span class="p">])</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">ap</span><span class="o">.</span><span class="n">algorithm</span><span class="o">.</span><span class="n">discount</span> <span class="o">*</span> \
<span class="n">q_st_plus_1_target</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">selected_actions</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span>
<span class="n">advantage_learning_update</span> <span class="o">=</span> <span class="n">v_st_target</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">-</span> <span class="n">q_st_target</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">batch</span><span class="o">.</span><span class="n">actions</span><span class="p">()[</span><span class="n">i</span><span class="p">]]</span>
<span class="n">next_advantage_learning_update</span> <span class="o">=</span> <span class="n">v_st_plus_1_target</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">-</span> <span class="n">q_st_plus_1_target</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">selected_actions</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span>
<span class="c1"># Persistent Advantage Learning or Regular Advantage Learning</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">persistent</span><span class="p">:</span>
<span class="n">TD_targets</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">batch</span><span class="o">.</span><span class="n">actions</span><span class="p">()[</span><span class="n">i</span><span class="p">]]</span> <span class="o">-=</span> <span class="bp">self</span><span class="o">.</span><span class="n">alpha</span> <span class="o">*</span> <span class="nb">min</span><span class="p">(</span><span class="n">advantage_learning_update</span><span class="p">,</span> <span class="n">next_advantage_learning_update</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">TD_targets</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">batch</span><span class="o">.</span><span class="n">actions</span><span class="p">()[</span><span class="n">i</span><span class="p">]]</span> <span class="o">-=</span> <span class="bp">self</span><span class="o">.</span><span class="n">alpha</span> <span class="o">*</span> <span class="n">advantage_learning_update</span>
<span class="c1"># mixing monte carlo updates</span>
<span class="n">monte_carlo_target</span> <span class="o">=</span> <span class="n">total_returns</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<span class="n">TD_targets</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">batch</span><span class="o">.</span><span class="n">actions</span><span class="p">()[</span><span class="n">i</span><span class="p">]]</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">monte_carlo_mixing_rate</span><span class="p">)</span> <span class="o">*</span> <span class="n">TD_targets</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">batch</span><span class="o">.</span><span class="n">actions</span><span class="p">()[</span><span class="n">i</span><span class="p">]]</span> \
<span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">monte_carlo_mixing_rate</span> <span class="o">*</span> <span class="n">monte_carlo_target</span>
<span class="n">result</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">train_and_sync_networks</span><span class="p">(</span><span class="n">batch</span><span class="o">.</span><span class="n">states</span><span class="p">(</span><span class="n">network_keys</span><span class="p">),</span> <span class="n">TD_targets</span><span class="p">)</span>
<span class="n">total_loss</span><span class="p">,</span> <span class="n">losses</span><span class="p">,</span> <span class="n">unclipped_grads</span> <span class="o">=</span> <span class="n">result</span><span class="p">[:</span><span class="mi">3</span><span class="p">]</span>
<span class="k">return</span> <span class="n">total_loss</span><span class="p">,</span> <span class="n">losses</span><span class="p">,</span> <span class="n">unclipped_grads</span>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2018, Intel AI Lab
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../_static/doctools.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>