1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/graph_managers/batch_rl_graph_manager.py
Gal Leibovich 6e08c55ad5 Enabling-more-agents-for-Batch-RL-and-cleanup (#258)
allowing for the last training batch drawn to be smaller than batch_size + adding support for more agents in BatchRL by adding softmax with temperature to the corresponding heads + adding a CartPole_QR_DQN preset with a golden test + cleanups
2019-03-21 16:10:29 +02:00

182 lines
8.5 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from copy import deepcopy
from typing import Tuple, List, Union
from rl_coach.agents.dqn_agent import DQNAgentParameters
from rl_coach.agents.nec_agent import NECAgentParameters
from rl_coach.base_parameters import AgentParameters, VisualizationParameters, TaskParameters, \
PresetValidationParameters
from rl_coach.core_types import RunPhase
from rl_coach.environments.environment import EnvironmentParameters, Environment
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.level_manager import LevelManager
from rl_coach.logger import screen
from rl_coach.spaces import SpacesDefinition
from rl_coach.utils import short_dynamic_import
from rl_coach.memories.episodic import EpisodicExperienceReplayParameters
from rl_coach.core_types import TimeTypes
class BatchRLGraphManager(BasicRLGraphManager):
"""
A batch RL graph manager creates scenario of learning from a dataset without a simulator.
"""
def __init__(self, agent_params: AgentParameters, env_params: Union[EnvironmentParameters, None],
schedule_params: ScheduleParameters,
vis_params: VisualizationParameters = VisualizationParameters(),
preset_validation_params: PresetValidationParameters = PresetValidationParameters(),
name='batch_rl_graph', spaces_definition: SpacesDefinition = None, reward_model_num_epochs: int = 100,
train_to_eval_ratio: float = 0.8):
super().__init__(agent_params, env_params, schedule_params, vis_params, preset_validation_params, name)
self.is_batch_rl = True
self.time_metric = TimeTypes.Epoch
self.reward_model_num_epochs = reward_model_num_epochs
self.spaces_definition = spaces_definition
# setting this here to make sure that, by default, train_to_eval_ratio gets a value < 1
# (its default value in the memory is 1)
self.agent_params.memory.train_to_eval_ratio = train_to_eval_ratio
def _create_graph(self, task_parameters: TaskParameters) -> Tuple[List[LevelManager], List[Environment]]:
if self.env_params:
# environment loading
self.env_params.seed = task_parameters.seed
self.env_params.experiment_path = task_parameters.experiment_path
env = short_dynamic_import(self.env_params.path)(**self.env_params.__dict__,
visualization_parameters=self.visualization_parameters)
else:
env = None
# Only DQN variants and NEC are supported at this point.
assert(isinstance(self.agent_params, DQNAgentParameters) or isinstance(self.agent_params, NECAgentParameters))
# Only Episodic memories are supported,
# for evaluating the sequential doubly robust estimator
assert(isinstance(self.agent_params.memory, EpisodicExperienceReplayParameters))
# agent loading
self.agent_params.task_parameters = task_parameters # TODO: this should probably be passed in a different way
self.agent_params.name = "agent"
self.agent_params.is_batch_rl_training = True
# user hasn't defined params for the reward model. we will use the same params as used for the 'main' network.
if 'reward_model' not in self.agent_params.network_wrappers:
self.agent_params.network_wrappers['reward_model'] = deepcopy(self.agent_params.network_wrappers['main'])
agent = short_dynamic_import(self.agent_params.path)(self.agent_params)
if not env and not self.agent_params.memory.load_memory_from_file_path:
screen.warning("A BatchRLGraph requires setting a dataset to load into the agent's memory or alternatively "
"using an environment to create a (random) dataset from. This agent should only be used for "
"inference. ")
# set level manager
level_manager = LevelManager(agents=agent, environment=env, name="main_level",
spaces_definition=self.spaces_definition)
if env:
return [level_manager], [env]
else:
return [level_manager], []
def improve(self):
"""
The main loop of the run.
Defined in the following steps:
1. Heatup
2. Repeat:
2.1. Repeat:
2.1.1. Train
2.1.2. Possibly save checkpoint
2.2. Evaluate
:return: None
"""
self.verify_graph_was_created()
# initialize the network parameters from the global network
self.sync()
# TODO a bug in heatup where the last episode run is not fed into the ER. e.g. asked for 1024 heatup steps,
# last ran episode ended increased the total to 1040 steps, but the ER will contain only 1014 steps.
# The last episode is not there. Is this a bug in my changes or also on master?
# Creating a dataset during the heatup phase is useful mainly for tutorial and debug purposes. If we have both
# an environment and a dataset to load from, we will use the environment only for evaluating the policy,
# and will not run heatup.
# heatup
if self.env_params is not None and not self.agent_params.memory.load_memory_from_file_path:
self.heatup(self.heatup_steps)
self.improve_reward_model()
# improve
if self.task_parameters.task_index is not None:
screen.log_title("Starting to improve {} task index {}".format(self.name, self.task_parameters.task_index))
else:
screen.log_title("Starting to improve {}".format(self.name))
# the outer most training loop
improve_steps_end = self.total_steps_counters[RunPhase.TRAIN] + self.improve_steps
while self.total_steps_counters[RunPhase.TRAIN] < improve_steps_end:
# TODO if we have an environment, do we want to use it to have the agent train against, and use the
# collected replay buffer as a dataset? (as oppose to what we currently have, where the dataset is built
# during heatup, and is composed on random actions)
# perform several steps of training
if self.steps_between_evaluation_periods.num_steps > 0:
with self.phase_context(RunPhase.TRAIN):
self.reset_internal_state(force_environment_reset=True)
steps_between_evaluation_periods_end = self.current_step_counter + self.steps_between_evaluation_periods
while self.current_step_counter < steps_between_evaluation_periods_end:
self.train()
# the output of batch RL training is always a checkpoint of the trained agent. we always save a checkpoint,
# each epoch, regardless of the user's command line arguments.
self.save_checkpoint()
# run off-policy evaluation estimators to evaluate the agent's performance against the dataset
self.run_off_policy_evaluation()
if self.env_params is not None and self.evaluate(self.evaluation_steps):
# if we do have a simulator (although we are in a batch RL setting we might have a simulator, e.g. when
# demonstrating the batch RL use-case using one of the existing Coach environments),
# we might want to evaluate vs. the simulator every now and then.
break
def improve_reward_model(self):
"""
:return:
"""
screen.log_title("Training a regression model for estimating MDP rewards")
self.level_managers[0].agents['agent'].improve_reward_model(epochs=self.reward_model_num_epochs)
def run_off_policy_evaluation(self):
"""
Run off-policy evaluation estimators to evaluate the trained policy performance against the dataset
:return:
"""
self.level_managers[0].agents['agent'].run_off_policy_evaluation()