mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
* SAC algorithm * SAC - updates to agent (learn_from_batch), sac_head and sac_q_head to fix problem in gradient calculation. Now SAC agents is able to train. gym_environment - fixing an error in access to gym.spaces * Soft Actor Critic - code cleanup * code cleanup * V-head initialization fix * SAC benchmarks * SAC Documentation * typo fix * documentation fixes * documentation and version update * README typo
322 lines
15 KiB
Python
322 lines
15 KiB
Python
#
|
|
# Copyright (c) 2019 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from typing import Union
|
|
import copy
|
|
import numpy as np
|
|
from collections import OrderedDict
|
|
|
|
from rl_coach.agents.agent import Agent
|
|
from rl_coach.agents.policy_optimization_agent import PolicyOptimizationAgent
|
|
|
|
from rl_coach.architectures.head_parameters import SACQHeadParameters,SACPolicyHeadParameters,VHeadParameters
|
|
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
|
|
from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, AgentParameters, EmbedderScheme, MiddlewareScheme
|
|
from rl_coach.core_types import ActionInfo, EnvironmentSteps, RunPhase
|
|
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
|
|
from rl_coach.memories.non_episodic.experience_replay import ExperienceReplayParameters
|
|
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
|
from rl_coach.spaces import BoxActionSpace
|
|
|
|
|
|
# There are 3 networks in SAC implementation. All have the same topology but parameters are not shared.
|
|
# The networks are:
|
|
# 1. State Value Network - SACValueNetwork
|
|
# 2. Soft Q Value Network - SACCriticNetwork
|
|
# 3. Policy Network - SACPolicyNetwork - currently supporting only Gaussian Policy
|
|
|
|
|
|
# 1. State Value Network - SACValueNetwork
|
|
# this is the state value network in SAC.
|
|
# The network is trained to predict (regression) the state value in the max-entropy settings
|
|
# The objective to be minimized is given in equation (5) in the paper:
|
|
#
|
|
# J(psi)= E_(s~D)[0.5*(V_psi(s)-y(s))^2]
|
|
# where y(s) = E_(a~pi)[Q_theta(s,a)-log(pi(a|s))]
|
|
|
|
|
|
# Default parameters for value network:
|
|
# topology :
|
|
# input embedder : EmbedderScheme.Medium (Dense(256)) , relu activation
|
|
# middleware : EmbedderScheme.Medium (Dense(256)) , relu activation
|
|
|
|
|
|
class SACValueNetworkParameters(NetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters(activation_function='relu')}
|
|
self.middleware_parameters = FCMiddlewareParameters(activation_function='relu')
|
|
self.heads_parameters = [VHeadParameters(initializer='xavier')]
|
|
self.rescale_gradient_from_head_by_factor = [1]
|
|
self.optimizer_type = 'Adam'
|
|
self.batch_size = 256
|
|
self.async_training = False
|
|
self.learning_rate = 0.0003 # 3e-4 see appendix D in the paper
|
|
self.create_target_network = True # tau is set in SoftActorCriticAlgorithmParameters.rate_for_copying_weights_to_target
|
|
|
|
|
|
# 2. Soft Q Value Network - SACCriticNetwork
|
|
# the whole network is built in the SACQHeadParameters. we use empty input embedder and middleware
|
|
class SACCriticNetworkParameters(NetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters(scheme=EmbedderScheme.Empty)}
|
|
self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Empty)
|
|
self.heads_parameters = [SACQHeadParameters()] # SACQHeadParameters includes the topology of the head
|
|
self.rescale_gradient_from_head_by_factor = [1]
|
|
self.optimizer_type = 'Adam'
|
|
self.batch_size = 256
|
|
self.async_training = False
|
|
self.learning_rate = 0.0003
|
|
self.create_target_network = False
|
|
|
|
|
|
# 3. policy Network
|
|
# Default parameters for policy network:
|
|
# topology :
|
|
# input embedder : EmbedderScheme.Medium (Dense(256)) , relu activation
|
|
# middleware : EmbedderScheme = [Dense(256)] , relu activation --> scheme should be overridden in preset
|
|
class SACPolicyNetworkParameters(NetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters(activation_function='relu')}
|
|
self.middleware_parameters = FCMiddlewareParameters(activation_function='relu')
|
|
self.heads_parameters = [SACPolicyHeadParameters()]
|
|
self.rescale_gradient_from_head_by_factor = [1]
|
|
self.optimizer_type = 'Adam'
|
|
self.batch_size = 256
|
|
self.async_training = False
|
|
self.learning_rate = 0.0003
|
|
self.create_target_network = False
|
|
self.l2_regularization = 0 # weight decay regularization. not used in the original paper
|
|
|
|
|
|
# Algorithm Parameters
|
|
|
|
class SoftActorCriticAlgorithmParameters(AlgorithmParameters):
|
|
"""
|
|
:param num_steps_between_copying_online_weights_to_target: (StepMethod)
|
|
The number of steps between copying the online network weights to the target network weights.
|
|
|
|
:param rate_for_copying_weights_to_target: (float)
|
|
When copying the online network weights to the target network weights, a soft update will be used, which
|
|
weight the new online network weights by rate_for_copying_weights_to_target. (Tau as defined in the paper)
|
|
|
|
:param use_deterministic_for_evaluation: (bool)
|
|
If True, during the evaluation phase, action are chosen deterministically according to the policy mean
|
|
and not sampled from the policy distribution.
|
|
"""
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(1)
|
|
self.rate_for_copying_weights_to_target = 0.005
|
|
self.use_deterministic_for_evaluation = True # evaluate agent using deterministic policy (i.e. take the mean value)
|
|
|
|
|
|
class SoftActorCriticAgentParameters(AgentParameters):
|
|
def __init__(self):
|
|
super().__init__(algorithm=SoftActorCriticAlgorithmParameters(),
|
|
exploration=AdditiveNoiseParameters(),
|
|
memory=ExperienceReplayParameters(), # SAC doesnt use episodic related data
|
|
# network wrappers:
|
|
networks=OrderedDict([("policy", SACPolicyNetworkParameters()),
|
|
("q", SACCriticNetworkParameters()),
|
|
("v", SACValueNetworkParameters())]))
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.soft_actor_critic_agent:SoftActorCriticAgent'
|
|
|
|
|
|
# Soft Actor Critic - https://arxiv.org/abs/1801.01290
|
|
class SoftActorCriticAgent(PolicyOptimizationAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
self.last_gradient_update_step_idx = 0
|
|
|
|
# register signals to track (in learn_from_batch)
|
|
self.policy_means = self.register_signal('Policy_mu_avg')
|
|
self.policy_logsig = self.register_signal('Policy_logsig')
|
|
self.policy_logprob_sampled = self.register_signal('Policy_logp_sampled')
|
|
self.policy_grads = self.register_signal('Policy_grads_sumabs')
|
|
|
|
self.q1_values = self.register_signal("Q1")
|
|
self.TD_err1 = self.register_signal("TD err1")
|
|
self.q2_values = self.register_signal("Q2")
|
|
self.TD_err2 = self.register_signal("TD err2")
|
|
self.v_tgt_ns = self.register_signal('V_tgt_ns')
|
|
self.v_onl_ys = self.register_signal('V_onl_ys')
|
|
self.action_signal = self.register_signal("actions")
|
|
|
|
def learn_from_batch(self, batch):
|
|
#########################################
|
|
# need to update the following networks:
|
|
# 1. actor (policy)
|
|
# 2. state value (v)
|
|
# 3. critic (q1 and q2)
|
|
# 4. target network - probably already handled by V
|
|
|
|
#########################################
|
|
# define the networks to be used
|
|
|
|
# State Value Network
|
|
value_network = self.networks['v']
|
|
value_network_keys = self.ap.network_wrappers['v'].input_embedders_parameters.keys()
|
|
|
|
# Critic Network
|
|
q_network = self.networks['q'].online_network
|
|
q_head = q_network.output_heads[0]
|
|
q_network_keys = self.ap.network_wrappers['q'].input_embedders_parameters.keys()
|
|
|
|
# Actor (policy) Network
|
|
policy_network = self.networks['policy'].online_network
|
|
policy_network_keys = self.ap.network_wrappers['policy'].input_embedders_parameters.keys()
|
|
|
|
##########################################
|
|
# 1. updating the actor - according to (13) in the paper
|
|
policy_inputs = copy.copy(batch.states(policy_network_keys))
|
|
policy_results = policy_network.predict(policy_inputs)
|
|
|
|
policy_mu, policy_std, sampled_raw_actions, sampled_actions, sampled_actions_logprob, \
|
|
sampled_actions_logprob_mean = policy_results
|
|
|
|
self.policy_means.add_sample(policy_mu)
|
|
self.policy_logsig.add_sample(policy_std)
|
|
self.policy_logprob_sampled.add_sample(sampled_actions_logprob_mean)
|
|
|
|
# get the state-action values for the replayed states and their corresponding actions from the policy
|
|
q_inputs = copy.copy(batch.states(q_network_keys))
|
|
q_inputs['output_0_0'] = sampled_actions
|
|
log_target = q_network.predict(q_inputs)[0].squeeze()
|
|
|
|
# log internal q values
|
|
q1_vals, q2_vals = q_network.predict(q_inputs, outputs=[q_head.q1_output, q_head.q2_output])
|
|
self.q1_values.add_sample(q1_vals)
|
|
self.q2_values.add_sample(q2_vals)
|
|
|
|
# calculate the gradients according to (13)
|
|
# get the gradients of log_prob w.r.t the weights (parameters) - indicated as phi in the paper
|
|
initial_feed_dict = {policy_network.gradients_weights_ph[5]: np.array(1.0)}
|
|
dlogp_dphi = policy_network.predict(policy_inputs,
|
|
outputs=policy_network.weighted_gradients[5],
|
|
initial_feed_dict=initial_feed_dict)
|
|
|
|
# calculate dq_da
|
|
dq_da = q_network.predict(q_inputs,
|
|
outputs=q_network.gradients_wrt_inputs[1]['output_0_0'])
|
|
|
|
# calculate da_dphi
|
|
initial_feed_dict = {policy_network.gradients_weights_ph[3]: dq_da}
|
|
dq_dphi = policy_network.predict(policy_inputs,
|
|
outputs=policy_network.weighted_gradients[3],
|
|
initial_feed_dict=initial_feed_dict)
|
|
|
|
# now given dlogp_dphi, dq_dphi we need to calculate the policy gradients according to (13)
|
|
policy_grads = [dlogp_dphi[l] - dq_dphi[l] for l in range(len(dlogp_dphi))]
|
|
|
|
# apply the gradients to policy networks
|
|
policy_network.apply_gradients(policy_grads)
|
|
grads_sumabs = np.sum([np.sum(np.abs(policy_grads[l])) for l in range(len(policy_grads))])
|
|
self.policy_grads.add_sample(grads_sumabs)
|
|
|
|
##########################################
|
|
# 2. updating the state value online network weights
|
|
# done by calculating the targets for the v head according to (5) in the paper
|
|
# value_targets = log_targets-sampled_actions_logprob
|
|
value_inputs = copy.copy(batch.states(value_network_keys))
|
|
value_targets = log_target - sampled_actions_logprob
|
|
|
|
self.v_onl_ys.add_sample(value_targets)
|
|
|
|
# call value_network apply gradients with this target
|
|
value_loss = value_network.online_network.train_on_batch(value_inputs, value_targets[:,None])[0]
|
|
|
|
##########################################
|
|
# 3. updating the critic (q networks)
|
|
# updating q networks according to (7) in the paper
|
|
|
|
# define the input to the q network: state has been already updated previously, but now we need
|
|
# the actions from the batch (and not those sampled by the policy)
|
|
q_inputs['output_0_0'] = batch.actions(len(batch.actions().shape) == 1)
|
|
|
|
# define the targets : scale_reward * reward + (1-terminal)*discount*v_target_next_state
|
|
# define v_target_next_state
|
|
value_inputs = copy.copy(batch.next_states(value_network_keys))
|
|
v_target_next_state = value_network.target_network.predict(value_inputs)
|
|
self.v_tgt_ns.add_sample(v_target_next_state)
|
|
# Note: reward is assumed to be rescaled by RewardRescaleFilter in the preset parameters
|
|
TD_targets = batch.rewards(expand_dims=True) + \
|
|
(1.0 - batch.game_overs(expand_dims=True)) * self.ap.algorithm.discount * v_target_next_state
|
|
|
|
# call critic network update
|
|
result = q_network.train_on_batch(q_inputs, TD_targets, additional_fetches=[q_head.q1_loss, q_head.q2_loss])
|
|
total_loss, losses, unclipped_grads = result[:3]
|
|
q1_loss, q2_loss = result[3]
|
|
self.TD_err1.add_sample(q1_loss)
|
|
self.TD_err2.add_sample(q2_loss)
|
|
|
|
##########################################
|
|
# 4. updating the value target network
|
|
# I just need to set the parameter rate_for_copying_weights_to_target in the agent parameters to be 1-tau
|
|
# where tau is the hyper parameter as defined in sac original implementation
|
|
|
|
return total_loss, losses, unclipped_grads
|
|
|
|
def get_prediction(self, states):
|
|
"""
|
|
get the mean and stdev of the policy distribution given 'states'
|
|
:param states: the states for which we need to sample actions from the policy
|
|
:return: mean and stdev
|
|
"""
|
|
tf_input_state = self.prepare_batch_for_inference(states, 'policy')
|
|
return self.networks['policy'].online_network.predict(tf_input_state)
|
|
|
|
def train(self):
|
|
# since the algorithm works with experience replay buffer (non-episodic),
|
|
# we cant use the policy optimization train method. we need Agent.train
|
|
# note that since in Agent.train there is no apply_gradients, we need to do it in learn from batch
|
|
return Agent.train(self)
|
|
|
|
def choose_action(self, curr_state):
|
|
"""
|
|
choose_action - chooses the most likely action
|
|
if 'deterministic' - take the mean of the policy which is the prediction of the policy network.
|
|
else - use the exploration policy
|
|
:param curr_state:
|
|
:return: action wrapped in ActionInfo
|
|
"""
|
|
if not isinstance(self.spaces.action, BoxActionSpace):
|
|
raise ValueError("SAC works only for continuous control problems")
|
|
# convert to batch so we can run it through the network
|
|
tf_input_state = self.prepare_batch_for_inference(curr_state, 'policy')
|
|
# use the online network for prediction
|
|
policy_network = self.networks['policy'].online_network
|
|
policy_head = policy_network.output_heads[0]
|
|
result = policy_network.predict(tf_input_state,
|
|
outputs=[policy_head.policy_mean, policy_head.actions])
|
|
action_mean, action_sample = result
|
|
|
|
# if using deterministic policy, take the mean values. else, use exploration policy to sample from the pdf
|
|
if self.phase == RunPhase.TEST and self.ap.algorithm.use_deterministic_for_evaluation:
|
|
action = action_mean[0]
|
|
else:
|
|
action = action_sample[0]
|
|
|
|
self.action_signal.add_sample(action)
|
|
|
|
action_info = ActionInfo(action=action)
|
|
return action_info
|