1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/rollout_worker.py
Balaji Subramaniam 7e7006305a Integrate coach.py params with distributed Coach. (#42)
* Integrate coach.py params with distributed Coach.
* Minor improvements
- Use enums instead of constants.
- Reduce code duplication.
- Ask experiment name with timeout.
2018-11-05 09:33:30 -08:00

107 lines
3.3 KiB
Python

"""
this rollout worker:
- restores a model from disk
- evaluates a predefined number of episodes
- contributes them to a distributed memory
- exits
"""
import time
import os
import math
from rl_coach.base_parameters import TaskParameters, DistributedCoachSynchronizationType
from rl_coach.core_types import EnvironmentSteps, RunPhase
from google.protobuf import text_format
from tensorflow.python.training.checkpoint_state_pb2 import CheckpointState
def has_checkpoint(checkpoint_dir):
"""
True if a checkpoint is present in checkpoint_dir
"""
if os.path.isdir(checkpoint_dir):
if len(os.listdir(checkpoint_dir)) > 0:
return os.path.isfile(os.path.join(checkpoint_dir, "checkpoint"))
return False
def wait_for_checkpoint(checkpoint_dir, data_store=None, timeout=10):
"""
block until there is a checkpoint in checkpoint_dir
"""
for i in range(timeout):
if data_store:
data_store.load_from_store()
if has_checkpoint(checkpoint_dir):
return
time.sleep(10)
# one last time
if has_checkpoint(checkpoint_dir):
return
raise ValueError((
'Waited {timeout} seconds, but checkpoint never found in '
'{checkpoint_dir}'
).format(
timeout=timeout,
checkpoint_dir=checkpoint_dir,
))
def data_store_ckpt_load(data_store):
while True:
data_store.load_from_store()
time.sleep(10)
def get_latest_checkpoint(checkpoint_dir):
if os.path.exists(os.path.join(checkpoint_dir, 'checkpoint')):
ckpt = CheckpointState()
contents = open(os.path.join(checkpoint_dir, 'checkpoint'), 'r').read()
text_format.Merge(contents, ckpt)
rel_path = os.path.relpath(ckpt.model_checkpoint_path, checkpoint_dir)
return int(rel_path.split('_Step')[0])
def rollout_worker(graph_manager, checkpoint_dir, data_store, num_workers):
"""
wait for first checkpoint then perform rollouts using the model
"""
wait_for_checkpoint(checkpoint_dir)
task_parameters = TaskParameters()
task_parameters.__dict__['checkpoint_restore_dir'] = checkpoint_dir
time.sleep(30)
graph_manager.create_graph(task_parameters)
with graph_manager.phase_context(RunPhase.TRAIN):
error_compensation = 100
last_checkpoint = 0
act_steps = math.ceil((graph_manager.agent_params.algorithm.num_consecutive_playing_steps.num_steps + error_compensation)/num_workers)
for i in range(int(graph_manager.improve_steps.num_steps/act_steps)):
graph_manager.act(EnvironmentSteps(num_steps=act_steps))
new_checkpoint = get_latest_checkpoint(checkpoint_dir)
if graph_manager.agent_params.algorithm.distributed_coach_synchronization_type == DistributedCoachSynchronizationType.SYNC:
while new_checkpoint < last_checkpoint + 1:
if data_store:
data_store.load_from_store()
new_checkpoint = get_latest_checkpoint(checkpoint_dir)
graph_manager.restore_checkpoint()
if graph_manager.agent_params.algorithm.distributed_coach_synchronization_type == DistributedCoachSynchronizationType.ASYNC:
if new_checkpoint > last_checkpoint:
graph_manager.restore_checkpoint()
last_checkpoint = new_checkpoint