mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
234 lines
14 KiB
Python
234 lines
14 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from typing import Type
|
|
|
|
from rl_coach.base_parameters import NetworkComponentParameters
|
|
|
|
|
|
class HeadParameters(NetworkComponentParameters):
|
|
def __init__(self, parameterized_class_name: str, activation_function: str = 'relu', name: str= 'head',
|
|
num_output_head_copies: int=1, rescale_gradient_from_head_by_factor: float=1.0,
|
|
loss_weight: float=1.0, dense_layer=None):
|
|
super().__init__(dense_layer=dense_layer)
|
|
self.activation_function = activation_function
|
|
self.name = name
|
|
self.num_output_head_copies = num_output_head_copies
|
|
self.rescale_gradient_from_head_by_factor = rescale_gradient_from_head_by_factor
|
|
self.loss_weight = loss_weight
|
|
self.parameterized_class_name = parameterized_class_name
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.architectures.tensorflow_components.heads:' + self.parameterized_class_name
|
|
|
|
|
|
class PPOHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='tanh', name: str='ppo_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="PPOHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class VHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='v_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None, initializer='normalized_columns'):
|
|
super().__init__(parameterized_class_name="VHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
self.initializer = initializer
|
|
|
|
|
|
class DDPGVHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='ddpg_v_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None, initializer='normalized_columns'):
|
|
super().__init__(parameterized_class_name="DDPGVHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
self.initializer = initializer
|
|
|
|
|
|
class CategoricalQHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='categorical_q_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="CategoricalQHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class RegressionHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='q_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None, scheme=None):
|
|
super().__init__(parameterized_class_name="RegressionHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class DDPGActorHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='tanh', name: str='policy_head_params', batchnorm: bool=True,
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="DDPGActor", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
self.batchnorm = batchnorm
|
|
|
|
|
|
class DNDQHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='dnd_q_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="DNDQHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class DuelingQHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='dueling_q_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="DuelingQHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class MeasurementsPredictionHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='measurements_prediction_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="MeasurementsPredictionHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class NAFHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='tanh', name: str='naf_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="NAFHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class PolicyHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='tanh', name: str='policy_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="PolicyHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class PPOVHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='ppo_v_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="PPOVHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class QHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='q_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="QHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class ClassificationHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='classification_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="ClassificationHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class QuantileRegressionQHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='quantile_regression_q_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="QuantileRegressionQHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class RainbowQHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='rainbow_q_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="RainbowQHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class ACERPolicyHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='acer_policy_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None):
|
|
super().__init__(parameterized_class_name="ACERPolicyHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
|
|
|
|
class SACPolicyHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='sac_policy_head_params', dense_layer=None):
|
|
super().__init__(parameterized_class_name='SACPolicyHead', activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer)
|
|
|
|
|
|
class SACQHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='sac_q_head_params', dense_layer=None,
|
|
layers_sizes: tuple = (256, 256)):
|
|
super().__init__(parameterized_class_name='SACQHead', activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer)
|
|
self.network_layers_sizes = layers_sizes
|
|
|
|
|
|
class TD3VHeadParameters(HeadParameters):
|
|
def __init__(self, activation_function: str ='relu', name: str='td3_v_head_params',
|
|
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
|
loss_weight: float = 1.0, dense_layer=None, initializer='xavier'):
|
|
super().__init__(parameterized_class_name="TD3VHead", activation_function=activation_function, name=name,
|
|
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
|
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
|
loss_weight=loss_weight)
|
|
self.initializer = initializer |