1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/rollout_worker.py
2018-10-23 16:54:43 -04:00

163 lines
5.5 KiB
Python

"""
this rollout worker:
- restores a model from disk
- evaluates a predefined number of episodes
- contributes them to a distributed memory
- exits
"""
import argparse
import time
import os
import json
from threading import Thread
from rl_coach.base_parameters import TaskParameters
from rl_coach.coach import expand_preset
from rl_coach.core_types import EnvironmentEpisodes, RunPhase
from rl_coach.utils import short_dynamic_import
from rl_coach.memories.backend.memory_impl import construct_memory_params
from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params
from google.protobuf import text_format
from tensorflow.python.training.checkpoint_state_pb2 import CheckpointState
# Q: specify alternative distributed memory, or should this go in the preset?
# A: preset must define distributed memory to be used. we aren't going to take
# a non-distributed preset and automatically distribute it.
def has_checkpoint(checkpoint_dir):
"""
True if a checkpoint is present in checkpoint_dir
"""
if os.path.isdir(checkpoint_dir):
if len(os.listdir(checkpoint_dir)) > 0:
return os.path.isfile(os.path.join(checkpoint_dir, "checkpoint"))
return False
def wait_for_checkpoint(checkpoint_dir, data_store=None, timeout=10):
"""
block until there is a checkpoint in checkpoint_dir
"""
for i in range(timeout):
if data_store:
data_store.load_from_store()
if has_checkpoint(checkpoint_dir):
return
time.sleep(10)
# one last time
if has_checkpoint(checkpoint_dir):
return
raise ValueError((
'Waited {timeout} seconds, but checkpoint never found in '
'{checkpoint_dir}'
).format(
timeout=timeout,
checkpoint_dir=checkpoint_dir,
))
def data_store_ckpt_load(data_store):
while True:
data_store.load_from_store()
time.sleep(10)
def check_for_new_checkpoint(checkpoint_dir, last_checkpoint):
if os.path.exists(os.path.join(checkpoint_dir, 'checkpoint')):
ckpt = CheckpointState()
contents = open(os.path.join(checkpoint_dir, 'checkpoint'), 'r').read()
text_format.Merge(contents, ckpt)
rel_path = os.path.relpath(ckpt.model_checkpoint_path, checkpoint_dir)
current_checkpoint = int(rel_path.split('_Step')[0])
if current_checkpoint > last_checkpoint:
last_checkpoint = current_checkpoint
return last_checkpoint
def rollout_worker(graph_manager, checkpoint_dir):
"""
wait for first checkpoint then perform rollouts using the model
"""
wait_for_checkpoint(checkpoint_dir)
task_parameters = TaskParameters()
task_parameters.__dict__['checkpoint_restore_dir'] = checkpoint_dir
time.sleep(30)
graph_manager.create_graph(task_parameters)
graph_manager.phase = RunPhase.TRAIN
last_checkpoint = 0
for i in range(10000000):
graph_manager.act(EnvironmentEpisodes(num_steps=1))
new_checkpoint = check_for_new_checkpoint(checkpoint_dir, last_checkpoint)
if new_checkpoint > last_checkpoint:
last_checkpoint = new_checkpoint
graph_manager.restore_checkpoint()
graph_manager.phase = RunPhase.UNDEFINED
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--preset',
help="(string) Name of a preset to run (class name from the 'presets' directory.)",
type=str,
required=True)
parser.add_argument('--checkpoint_dir',
help='(string) Path to a folder containing a checkpoint to restore the model from.',
type=str,
default='/checkpoint')
parser.add_argument('-r', '--redis_ip',
help="(string) IP or host for the redis server",
default='localhost',
type=str)
parser.add_argument('-rp', '--redis_port',
help="(int) Port of the redis server",
default=6379,
type=int)
parser.add_argument('--memory_backend_params',
help="(string) JSON string of the memory backend params",
type=str)
parser.add_argument('--data_store_params',
help="(string) JSON string of the data store params",
type=str)
args = parser.parse_args()
graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True)
if args.memory_backend_params:
args.memory_backend_params = json.loads(args.memory_backend_params)
print(args.memory_backend_params)
args.memory_backend_params['run_type'] = 'worker'
print(construct_memory_params(args.memory_backend_params))
graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(args.memory_backend_params))
if args.data_store_params:
data_store_params = construct_data_store_params(json.loads(args.data_store_params))
data_store_params.checkpoint_dir = args.checkpoint_dir
graph_manager.data_store_params = data_store_params
data_store = get_data_store(data_store_params)
wait_for_checkpoint(checkpoint_dir=args.checkpoint_dir, data_store=data_store)
# thread = Thread(target = data_store_ckpt_load, args = [data_store])
# thread.start()
rollout_worker(
graph_manager=graph_manager,
checkpoint_dir=args.checkpoint_dir,
)
if __name__ == '__main__':
main()