mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
110 lines
5.0 KiB
Python
110 lines
5.0 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from agents.actor_critic_agent import *
|
|
from configurations import *
|
|
|
|
|
|
# Deep Deterministic Policy Gradients Network - https://arxiv.org/pdf/1509.02971.pdf
|
|
class DDPGAgent(ActorCriticAgent):
|
|
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
|
ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
|
create_target_network=True)
|
|
# define critic network
|
|
self.critic_network = self.main_network
|
|
# self.networks.append(self.critic_network)
|
|
|
|
# define actor network
|
|
tuning_parameters.agent.input_types = {'observation': InputTypes.Observation}
|
|
tuning_parameters.agent.output_types = [OutputTypes.Pi]
|
|
self.actor_network = NetworkWrapper(tuning_parameters, True, self.has_global, 'actor',
|
|
self.replicated_device, self.worker_device)
|
|
self.networks.append(self.actor_network)
|
|
|
|
self.q_values = Signal("Q")
|
|
self.signals.append(self.q_values)
|
|
|
|
self.reset_game(do_not_reset_env=True)
|
|
|
|
def learn_from_batch(self, batch):
|
|
current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch)
|
|
|
|
# TD error = r + discount*max(q_st_plus_1) - q_st
|
|
next_actions = self.actor_network.target_network.predict(next_states)
|
|
inputs = copy.copy(next_states)
|
|
inputs['action'] = next_actions
|
|
q_st_plus_1 = self.critic_network.target_network.predict(inputs)
|
|
TD_targets = np.expand_dims(rewards, -1) + \
|
|
(1.0 - np.expand_dims(game_overs, -1)) * self.tp.agent.discount * q_st_plus_1
|
|
|
|
# get the gradients of the critic output with respect to the action
|
|
actions_mean = self.actor_network.online_network.predict(current_states)
|
|
critic_online_network = self.critic_network.online_network
|
|
# TODO: convert into call to predict, current method ignores lstm middleware for example
|
|
action_gradients = self.critic_network.sess.run(critic_online_network.gradients_wrt_inputs[1],
|
|
feed_dict=critic_online_network._feed_dict({
|
|
**current_states,
|
|
'action': actions_mean,
|
|
}))[0]
|
|
|
|
# train the critic
|
|
if len(actions.shape) == 1:
|
|
actions = np.expand_dims(actions, -1)
|
|
result = self.critic_network.train_and_sync_networks({**current_states, 'action': actions}, TD_targets)
|
|
total_loss = result[0]
|
|
|
|
# apply the gradients from the critic to the actor
|
|
actor_online_network = self.actor_network.online_network
|
|
gradients = self.actor_network.sess.run(actor_online_network.weighted_gradients,
|
|
feed_dict=actor_online_network._feed_dict({
|
|
**current_states,
|
|
actor_online_network.gradients_weights_ph: -action_gradients,
|
|
}))
|
|
if self.actor_network.has_global:
|
|
self.actor_network.global_network.apply_gradients(gradients)
|
|
self.actor_network.update_online_network()
|
|
else:
|
|
self.actor_network.online_network.apply_gradients(gradients)
|
|
|
|
return total_loss
|
|
|
|
def train(self):
|
|
return Agent.train(self)
|
|
|
|
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
|
assert not self.env.discrete_controls, 'DDPG works only for continuous control problems'
|
|
result = self.actor_network.online_network.predict(self.tf_input_state(curr_state))
|
|
action_values = result[0].squeeze()
|
|
|
|
if phase == RunPhase.TRAIN:
|
|
action = self.exploration_policy.get_action(action_values)
|
|
else:
|
|
action = action_values
|
|
|
|
action = np.clip(action, self.env.action_space_low, self.env.action_space_high)
|
|
|
|
# get q value
|
|
action_batch = np.expand_dims(action, 0)
|
|
if type(action) != np.ndarray:
|
|
action_batch = np.array([[action]])
|
|
inputs = self.tf_input_state(curr_state)
|
|
inputs['action'] = action_batch
|
|
q_value = self.critic_network.online_network.predict(inputs)[0]
|
|
self.q_values.add_sample(q_value)
|
|
action_info = {"action_value": q_value}
|
|
|
|
return action, action_info
|